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Abstract 
 

Dozens of definitions of soil can be found in literature, ranging from the most 

straightforward concepts, where it is asserted, for example, that soil is a 

heterogeneous mixture of air, water, inorganic and organic solids, and 

microorganisms, to more complex concepts, where the soil is considered a living, four-

dimensional natural Entity. However, regardless of the adopted definition, the 

importance of soil is unquestionable, as it provides nutrients for plant growth essential 

for human and animal nutrition. Moreover, history has frequently shown that its misuse 

can lead to poverty, hunger, drought, and ecological and economic disasters. This 

great importance given to soil generates a need for ongoing studies searching for 

methods and tools that contribute to new knowledge. A powerful tool that can observe 

the elements of soil in a non-destructive way is computed tomography (CT). Despite 

advances in the resolution of CT equipment and computer power, there is no 

consensus on data analysis methods that can reveal the complexity of all elements 

associated with 3D soil images, especially methods that do not require a threshold to 

segment images. In this context, this work employs two methods originally developed 

for the analysis of complex signals, Detrended Fluctuation Analysis (DFA) and Fisher-

Shannon (FS), to bring a new understanding of the complexity of morphological 

properties of soil based on the analysis of 3D CT images. Up to date, these two 

methods have not been used in 3D image analysis. In this work, 3D soil tomographic 

images were analyzed using DFA in its original form and its generalization for 2D and 

3D data. The results of DFA exponents were found to be smaller than 0.5 indicating 

antipersistence of local density fluctuations, which are consistently stronger (lower 

exponent value) for the sugar cane plantation sample, than for the Atlantic Forest. 

Furthermore, a new complexity measure is defined as the distance from the 

isocomplexity line in the normalized FS plane, which may be seen as a quantifier of 

soil degradation level. This novel approach resulted in a high grouping success rate 

(91.7%) between soil covered by native vegetation (Atlantic Forest) and soil that was 

the subject of the degradation process as the consequence of land use change (from 

native Atlantic Forest to sugarcane cultivation). 

 

Keywords: X-Ray CT Scan Soil Samples. Detrended Fluctuation Analysis. Fisher-

Shannon plane. Complexity. Land use change. 
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Resumo 

 

Dezenas de definições de solo podem ser encontradas na literatura, desde os 

conceitos mais simples, onde se afirma, por exemplo, que o solo é uma mistura 

heterogênea de ar, água, sólidos inorgânicos e orgânicos, e microrganismos, até 

conceitos mais complexos, onde o solo é considerado uma Entidade natural viva e 

quadridimensional. No entanto, independentemente da definição adotada, a 

importância do solo é inquestionável, pois fornece nutrientes para o crescimento 

vegetal essenciais para a nutrição humana e animal. Além disso, a história tem 

mostrado frequentemente que seu mau uso pode levar à pobreza, fome, seca e 

desastres ecológicos e econômicos. Essa grande importância dada ao solo gera a 

necessidade de estudos contínuos em busca de métodos e ferramentas que 

contribuam para novos conhecimentos. Uma poderosa ferramenta que pode observar 

os elementos do solo de forma não destrutiva é a tomografia computadorizada (TC). 

Apesar dos avanços na resolução dos equipamentos de TC e na potência 

computacional, não há consenso sobre métodos de análise de dados que possam 

revelar a complexidade de todos os elementos associados às imagens 3D do solo, 

especialmente métodos que não necessitam de um limiar para segmentar imagens. 

Neste contexto, este trabalho emprega dois métodos originalmente desenvolvidos 

para a análise de sinais complexos, a Análise de Flutuação Destendenciada (DFA) e 

Fisher-Shannon (FS), para trazer uma nova compreensão da complexidade das 

propriedades morfológicas do solo com base na análise de imagens 3D de TC. Até o 

presente momento, esses dois métodos não foram utilizados na análise de imagens 

3D. Neste trabalho, foram analisadas imagens tomográficas de solo 3D utilizando DFA 

em sua forma original e sua generalização para dados 2D e 3D. Os resultados dos 

expoentes da DFA foram menores que 0,5, indicando antipersistência das flutuações 

da densidade local, que são consistentemente mais fortes (menor valor do expoente) 

para a amostra do canavial do que para a Mata Atlântica. Além disso, uma nova 

medida de complexidade é definida como a distância da linha de isocomplexidade no 

plano normalizado do FS, que pode ser vista como um quantificador do nível de 

degradação do solo. Essa nova abordagem resultou em uma alta taxa de sucesso de 

agrupamento (91,7%) entre o solo coberto por vegetação nativa (Mata Atlântica) e o 

solo que foi objeto de processo de degradação como consequência da mudança de 

uso da terra (de Mata Atlântica nativa para o cultivo de cana-de-açúcar). 

 

Palavras-chave: TC por raios X de amostras de solo. Análise de flutuação sem 

tendência. Plano de Fisher-Shannon. Complexidade. Mudança de uso do solo. 
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1. General introduction 
 

 

Dozens of definitions of soil can be found in literature, ranging from the most 

straightforward concepts, where it is asserted, for example, that soil is a 

heterogeneous mixture of air, water, inorganic and organic solids, and microorganisms 

(SPARKS, 2003), to more complex concepts, where the soil is considered a living, 

four-dimensional natural Entity (HARTEMINK, 2016). However, regardless of the 

adopted definition, the importance of soil is unquestionable, as it provides nutrients for 

plant growth essential for human and animal nutrition. Moreover, history has frequently 

shown that its misuse can lead to poverty, hunger, drought, and ecological and 

economic disasters (BEZDICEK; PAPENDICK; LAL, 2015). This great importance 

given to soil generates a need for ongoing studies searching for methods and tools 

that contribute to new knowledge. 

A powerful tool that can observe the elements of an object, including soil, in a 

non-destructive way (JON et al., 2022) is computed tomography (CT), which uses X-

rays and computers to record two-dimensional images of multiple slices of an object 

(figure 1). These images can be assembled with the aid of a computer to form a three-

dimensional image of the scanned object (figure 2). The first recorded use of CT was 

in the medical field in 1971 with the tomography of a human head (HOUNSFIELD, 

1973). The first recorded application of CT in the soil field was in 1982 with the analysis 

of the density of a soil sample (PETROVIC; SIEBERT; RIEKE, 1982). Although the 

first use of CT to record soil images is over 40 years old, interest in this research field 

continues with a growing trend, as can be seen from the graph (figure 3) of articles 

published using the Scopus database with the search terms "tomography and soil" on 

April 18th, 2023. 

Using CT to scan soil samples provides data that can help understand some 

problems, such as degradation caused by changes in land use. In Brazil, a typical 

example of this problem occurs in the country's northeastern region with the conversion 

of areas of the Atlantic Forest biome into areas for sugarcane cultivation. Such 

conversion can negatively affect soil functions such as water storage and filtration, 

nutrient storage and recycling, carbon storage, and habitat for biological activity 

(RABOT et al., 2018), directly influencing associated ecosystem services.  
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

  

Figure 1. Four examples of 2D images (790x790 pixels) from a sugar cane plantation 
soil sample: (a) slice_001, (b) slice_100, (c) slice_395 and (d) slice_790. 
 

 

Figure 2. 3D representation of a sugar cane plantation soil sample. 
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Despite advances in the resolution of CT equipment and computer power, there 

is no consensus on data analysis methods that can reveal the complexity of all 

elements associated with 3D soil images, especially methods that do not require a 

threshold to segment images. In this context, this work employs two methods originally 

developed for the analysis of complex signals, Detrended Fluctuation Analysis (DFA) 

and Fisher-Shannon (FS), to bring new understanding of the complexity of 

morphological properties of soil based on the analysis of 3D CT images. Up to date 

these two methods have not been used in 3D image analysis. 

 

 

Figure 3. Publications using the terms "tomography" and "soil" from 1982 to 2022, 

according to the Scopus database. 

  

 The DFA method is a tool typically used to analyze time series data to detect 

the presence of long-range correlations in non-stationary series. The advantage of 

DFA is that it can systematically eliminate trends of different orders (KANTELHARDT 

et al., 2001). The DFA method was initially proposed by Peng et al (PENG et al., 1994) 

in 1994 to analyze the organization of nucleotides in a DNA chain. Currently, several 

recent applications of DFA can be found in various areas of knowledge, such as 

physiology (BLOKHINA et al., 2023; VAZ; SILVA; STERGIOU, 2023), climatology 

(KIRÁLY; JÁNOSI, 2005; MALLICK et al., 2021; TATLI; DALFES, 2020), economics 

(KRISTOUFEK, 2019; MOHTI et al., 2019), engineering (BOUNOUA; AFTAB; OMLIN, 

2023; LIU; CHEN; ZHANG, 2020), sport (FERREIRA, 2018), and seismology 

(KATAOKA; MIYAGUCHI; AKIMOTO, 2021; SKORDAS; CHRISTOPOULOS; 
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SARLIS, 2020), among others. However, applications of DFA involving soil data are 

rare, among them three can be cited: the first that identifies active erosion sites (CAO 

et al., 2020); another that analyzes patterns of water storage in soil (BISWAS; 

ZELEKE; SI, 2012); and the third that analyzes time series of radioactive elements in 

soil (RAFIQUE et al., 2021). However, all three applications employ the multifractal 

version of DFA – Multifractal Detrended Fluctuation analysis (MFDFA), to analyze time 

series (RAFIQUE et al., 2021) or one - dimensional spatial data (BISWAS; ZELEKE; 

SI, 2012; CAO et al., 2020). In this work 3D soil tomographic images were analyzed 

using DFA in its original form and its generalization for 2D and 3D data (AGUIAR et 

al., 2022). 

 The FS method is a statistical technique originated in information theory that 

consists of a joint analysis of Fisher's information measure (FIM) (FISHER, 1925), 

which quantifies the amount of organization (or order) in a signal, and Shannon entropy 

(SE) (SHANNON, 1948), which quantifies the degree of uncertainty (or disorder) 

(LOVALLO; PIERINI; TELESCA, 2012). Recent applications of the Fisher-Shannon 

method can be found in various areas of science, such as ecology (BA et al., 2020; 

TELESCA et al., 2022), economics (FERNANDES; DE ARAUJO; SILVA, 2022; 

KWAPIÉ et al., 2023), physics (DEHESA, 2023; MARTÍNEZ-FLORES, 2021), 

physiology (FUENTES et al., 2022) and climatology (DA SILVA et al., 2021) among 

others. However, applications of the Fisher-Shannon method in soil data are scarce. 

One of these few applications relates seismic microtremors to soil type through FS 

analysis (TELESCA et al., 2015) analysis but does not use soil tomographic images in 

the analysis. Another application is a partial result of this work, which quantifies the 

complexity of soil using FS of 3D tomographic images. In this work (STOSIC et al., 

2022) the complexity of soil 3D tomographic images was analyzed through the 

application of FS method on the probability distribution of gray scale values of one 

dimensional columns extracted from 3D images. 

 Both methods DFA and FS were used to analyze 24 3D tomographic images 

extracted from soil samples from the Northeast region of Brazil, specifically in the state 

of Pernambuco between latitudes -7.84836 and -7.83519, and longitudes -34.9973 and 

-34.9935. Out of these images, 12 are from soil samples from the Atlantic Forest, and 

12 are from sites where native vegetation of Atlantic Forest was replaced by sugarcane 

plantations. 
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 The main objective of this work is to investigate complexity of morphological 

properties of soil under different land use. More specifically, it aims to: 

- Apply the DFA method for 1, 2 and 3 dimensional data to 3D soil images to quantify 

long-range correlations (persistence of density fluctuation); 

- To compare the performance of 1D, 2D, and 3D DFA methods to distinguish between 

soil properties under different land cover (Atlantic Forest and sugarcane plantations); 

- Verify if the information quantifiers of 3D soil images obtained by the Fisher-Shannon 

method capture changes in land use; 

- Quantify the complexity of soil samples in terms of distance from the isocomplexity 

line in the FS plane; 

- Propose a new procedure for normalization of FS quantifiers for representation on 

the Fisher-Shannon information plane while preserving the Fisher Shannon 

complexity. 
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2. Detrended fluctuation analysis of three-dimensional data: 

application to soil X-ray CT scans 
 

 

2.1 Abstract 
 

In this work we compare three distinct schemes for Detrended Fluctuation (DFA) 

analysis of 3D N×N×N data sets: i) a N×N set of 1D DFA runs for each vertical line of 

length N, ii) a set of N 2D DFA runs for each of the N×N planes along the z direction, 

and iii) a single 3D DFA run. The objective of this work is twofold: i) to compare the 

performance of 1D, 2D and 3D DFA methods in terms of compatibility as well as the 

richness of obtained results, and ii) to demonstrate how these three complementary 

approaches shed new light on the complexity of the structure of the two real soil 

samples, through the analysis of grayscale high-resolution X-ray CT scan images. 

 

Keywords: Detrended fluctuation analysis; three-dimensional data; X-ray CT scan soil 

samples. 

 

 

2.2 Introduction 

 

Analysis of three-dimensional data sets (images) has been gaining momentum 

over the years in diverse scientific and technological fields, with the advance of both 

technological data acquisition methods, and high-performance computational 

resources. A three-dimensional image may be composed in different ways, e.g. by 

merging satellite images acquired at successive time frames for a composite 

spatiotemporal analysis, but probably the most widespread applications stem from 

computed tomography (CT) scans.  

The dramatic increase in the performance of CT scanners in terms of resolution 

and image quality has led to their widespread use principally in medicine, but 

applications in other fields of science and technology have also been experiencing a 

dramatic rise. On the other hand, the analysis of high-resolution images may pose 

computational challenges, as e.g., a 1000x1000x1000 resolution image is composed 
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of one billion voxels (volume elements), represented by their gray scale values, that 

may turn out too demanding for many standard tools. 

In this work, we explore the application of detrended fluctuation analysis (DFA) 

on 3D images to quantify long-range correlations at different scales, with an example 

of high-resolution soil CT scan images. The DFA method was introduced in 1994 by 

Peng et al (PENG et al., 1994) to study correlations in non-stationary time series, and 

has been subsequently applied in diverse fields of science. More recently, a 

generalization of the DFA method was proposed by Gu and Zhou (GU; ZHOU, 2006), 

followed by only several applications up to date for 2D data sets, and to the best of our 

knowledge no applications have been published yet for 3D data. We consider here 

(and compare the results of) three distinct schemes for DFA analysis of NxNxN 3D soil 

samples: i) a NxN set of 1D DFA runs for each vertical line, ii) a set of N 2D DFA runs 

for each of the NxN planes along the vertical direction, and iii) a single 3D DFA run. 

The results of all three approaches are shown to be compatible. 

The choice of soil CT scan images for the examples studied here stems from 

the fact that a deeper understanding of the physical, chemical and biological processes 

within soil depends on the quantification of heterogeneity and complexity of the spatial 

distribution of soil particles and aggregates (SCHLÜTER et al., 2018). X-ray CT scans 

have already been employed for quantification of the physical structure and spatial 

distribution of the pore space (HOUSTON et al., 2017), revealing extraordinary 

complexity of this system (FALCONER et al., 2012; JUAREZ et al., 2013; KATUWAL 

et al., 2015). The complexity of soil structure has also been assessed by using methods 

based on concepts from statistical physics such as fractals and multifractals (LUO; LIN, 

2009; PERRET; PRASHER; KACIMOV, 2003; SAN JOSÉ MARTÍNEZ et al., 2010; 

WANG et al., 2016), information content (TORRE et al., 2020) and complex networks 

(CÁRDENAS et al., 2010; SAMEC et al., 2013). As there remains a lack of consensus 

on the appropriate poresolid CT threshold (GIBSON; LIN; BRUNS, 2006; TARQUIS et 

al., 2009; TORRE et al., 2020), it has also been suggested that grayscale soil images 

should be used for multifractal characterization of the soil structure, rather than 

thresholding (ROY; PERFECT, 2014; TORRE et al., 2018; TORRE; LOSADA; 

TARQUIS, 2018; ZHOU et al., 2010, 2011). 

In this work, we analyze two 790x790x790 greyscale level X-ray CT scan 

images of real soil samples, from a sugar cane field, and a nearby Atlantic Forest site, 

in northeastern Brazil. The objective of this work is twofold: i) to compare the 
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performance of 1D, 2D and 3D DFA methods, and ii) to demonstrate how this approach 

sheds new light on the complexity of the structure of the two real soil samples. In the 

next section we describe the methodology, then we show the results with discussion, 

and finally we draw the conclusions. 

 

 

2.3 Methodology 
 

2.3.1 Detrended fluctuation analysis (1D DFA) 
 

Detrended fluctuation analysis (DFA) was introduced by Peng et al. (PENG et 

al., 1994) as a method for quantification of correlations in non-stationary time series 

(CHEN et al., 2002; HU et al., 2001; KANTELHARDT et al., 2001). This method 

represents a modified root-mean-square analysis of a random walk, and has been 

subsequently successfully applied in a wide spectrum of areas, ranging from 

physiology (GOLDBERGER et al., 2002; LI et al., 2019), to geophysics (CURRENTI et 

al., 2005), climatology (KIRÁLY; JÁNOSI, 2005; STOSIC; TELESCA; STOSIC, 2021), 

and finances (DE LIMA et al., 2018; YAMASAKI et al., 2005), to name just a few. 

For a random sequence of (positive and negative) increments (random walk 

steps), the implementation of the DFA algorithm is described as follows: 

 

i) The original series 𝑥(𝑖), 𝑖 = 1, . . . , 𝑁 is integrated to yield 

𝑋(𝑘) = ∑[𝑥(𝑖) − 〈𝑥〉]

𝑘

𝑖=1

   , 𝑘 = 1,2, … , 𝑁 

 

where 〈𝑥〉 = ∑ 𝑥(𝑖)/𝑁𝑁
𝑖=1  is the average. This step is necessary to transform the 

original series of random walk steps into a “profile” (series of the random walk 

displacements), and should be omitted if the actual data represent a profile, rather 

than steps. 

 

ii) Next, the integrated series 𝑋(𝑘) is divided into 𝑁𝑛 = [𝑁/𝑛] non-overlaping 

segments of length 𝑛 (here [∙] stands for the integer value of the argument), and 

in each segment 𝑠 = 1, … , 𝑁𝑛 the local trend 𝑋𝑛.𝑠(𝑘) (linear or higher-order 
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polynomial least squares fit – termed DFA1, DFA2, DFA3,…, for polynomials of 

order 1,2, 3,…, respectively) is estimated and subtracted from 𝑋(𝑘). In DFAm, 

trends of order 𝑚 in the profile 𝑋(𝑘), and of order 𝑚 − 1 in the original record 𝑥(𝑖) 

are eliminated. 

 

iii) The detrended variance is now calculated as  

 

 

 

iv) Repeating this calculation for different segment sizes provides the relationship 

between the fluctuation function 𝐹(𝑛) and the segment size 𝑛. If long-term 

correlations are present in the original series, 𝐹(𝑛) increases with 𝑛 according to 

a power law 

𝐹(𝑛) ~ 𝑛𝛼1. 

 

The scaling exponent 𝛼 is obtained as the slope of the linear regression of log 𝐹(𝑛) 

versus log 𝑛. The value 𝛼1 = 0.5 indicates the absence of correlations (white noise), 

𝛼1 > 0.5 indicates the persistence of long-term correlations, meaning that large (small) 

values are more likely to be followed by large (small) values, while 𝛼1 < 0.5 indicates 

antipersistent long-term correlations, meaning that large values are more likely to be 

followed by small values, and vice versa. The values 𝛼1 = 1 and 𝛼1 = 1.5 correspond 

to 1/𝑓 noise and Brownian noise (integration of white noise), respectively (PENG et 

al., 1994), and values of 𝛼1 > 1.0 are obtained for fractional Brownian motion (when a 

series of displacements is integrated). 

 

2.3.2 Detrended fluctuation analysis in two dimensions (2D DFA) 
 

More recently, Guo and Zheng (GU; ZHOU, 2006) have generalized the above 

described one-dimensional DFA algorithm for higher dimensions. Up to date, there 

have been several implementations of this method (ALPATOV; VIKHROV; 

GRISHANKINA, 2013; ALVAREZ-RAMIREZ et al., 2008; BARRERA et al., 2010; LIU 

et al., 2017; NIE et al., 2015; VARGAS-OLMOS et al., 2015; VELAZQUEZ-CAMILO et 

al., 2010) in two-dimensions, for which the approach consists of the following steps. 

 

𝐹2(𝑛) =
1

𝑛𝑁𝑛
∑  ∑ [𝑋(𝑘) − 𝑋𝑛,𝑠(𝑘)]2

𝑠𝑛

k=(s−1)n+1

𝑁𝑛

s=1

. 
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i) A self-similar surface represented by two-dimensional 𝑁 × 𝑀 matrix 𝑥(𝑖, 𝑗), 𝑖 =

1, … , 𝑁 and 𝑗 = 1, . . , 𝑀 is divided into 𝑁𝑛 × 𝑀𝑛 square non-overlapping segments 

of size 𝑛 ×  𝑛, where 𝑁𝑛 = [𝑁/𝑛]  and 𝑀𝑛 = [𝑀/𝑛]. 

 

ii) In each segment indexed by 𝑠 = 1, . . . , 𝑁𝑛 and 𝑡 = 1, . . . , 𝑀𝑛, consisting of data 

points 𝑥(𝑖, 𝑗) with 𝑖 = (𝑠 − 1)𝑛 + 1, … , 𝑠𝑛 , 𝑗 = (𝑡 − 1)𝑛 + 1, … , 𝑡𝑛, data are 

integrated to produce the profile 

𝑋𝑠,𝑡(𝑘, 𝑙) = ∑ ∑ 𝑥((𝑠 − 1)𝑛 + 𝑖, (t − 1)n + 𝑗)

𝑙

𝑗=1

𝑘

𝑖=1

  , 𝑘, 𝑙 = 1, … , 𝑛 

 

Note that the order of these two first steps has been reversed in comparison with 

the 1D DFA approach, but this is relevant only for multifractal generalization (GU; 

ZHOU, 2006), which is not being addressed here. Again, this step should be 

omitted if the actual data correspond to a profile rather than local fluctuations, in 

which case the profile segment simply consists of the data points 𝑋𝑠,𝑡(𝑘, 𝑙) =

𝑥((𝑠 − 1)𝑛 + 𝑘, (t − 1)n + 𝑙), for 𝑘, 𝑙 = 1, … , 𝑛 . 

 

iii) Next, the local trend �̃�𝑠,𝑡(𝑘, 𝑙) is captured for each segment by least-squares fitting 

to a linear (or higher-order polynomial) bivariate function, and subtracted from 

𝑋𝑠,𝑡(𝑘, 𝑙) to find the residuals, from which the detrended variance is calculated for 

each segment as 

𝐹2(𝑠, 𝑡, 𝑛) =
1

𝑛2
∑ ∑ (𝑋𝑠,𝑡(𝑘, 𝑙) − �̃�𝑠,𝑡(𝑘, 𝑙))

2
𝑛

𝑙=1

𝑛

𝑘=1

 

 

It was shown in (GU; ZHOU, 2006) that linear interpolation of the form 𝑎 + 𝑏𝑘 +

𝑐𝑙 works rather well. 

 

iv)  Finally, the fluctuation function 𝐹(𝑛) at scale 𝑛 is now calculated as  

𝐹(𝑛) = {
1

 𝑁𝑛𝑀𝑛
∑ ∑ 𝐹2(𝑠, 𝑡, 𝑛)

𝑀𝑛

𝑡=1

 𝑁𝑛

𝑠=1

 }

1/2

  . 
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v) As before, repeating this calculation for different segment sizes provides the 

relationship between the fluctuation function 𝐹(𝑛) and the segment size 𝑛. If long-

range correlations are present in the original data set, 𝐹(𝑛) increases with 𝑛 

according to a power law 

𝐹(𝑛)~𝑛𝛼2  

 

where the (2D DFA) scaling exponent 𝛼2 is obtained as the slope of the linear 

regression of log 𝐹(𝑛) versus log 𝑛. It describes the long-range power-law 

correlation properties of the surface and can be seen as a measure of surface 

texture (or roughness). The value 𝛼2 = 0.5 corresponds to non-correlated 

surfaces, while 𝛼2 > 0.5 and 𝛼2 < 0.5 correspond to persistent and antipersistent 

correlations of the surface fluctuations (GU; ZHOU, 2006). 

 

2.3.3 Detrended fluctuation analysis in three dimensions (3D DFA) 
 

While the Guo and Zheng (GU; ZHOU, 2006) generalization in principle covers 

any dimension above unity, they mention that they have tested the approach on 

synthetic datasets, but they do not provide explicit formulas. Moreover, to the best of 

our knowledge no works have been published up to date for DFA analysis of three-

dimensional (or higher dimensional) data. It may be inferred from (GU; ZHOU, 2006) 

that for 3D, the approach consists of the following steps. 

 

i) A self-similar volume represented by a three-dimensional 𝑁 × 𝑀 × 𝑃 matrix 

𝑥(𝑖, 𝑗, 𝑘), 𝑖 = 1, … , 𝑁 , 𝑗 = 1, . . , 𝑀 and 𝑘 = 1, . . , 𝑃 is divided into 𝑁𝑛 × 𝑀𝑛 × 𝑃𝑛 cubic 

non overlapping segments (boxes) of size 𝑛 ×  𝑛 ×  𝑛, where 𝑁𝑛 = [𝑁/𝑛] , 𝑀𝑛 =

[𝑀/𝑛] and 𝑃𝑛 = [𝑃/𝑛]. 

 

ii) In each box segment indexed by 𝑟 = 1, . . . , 𝑁𝑛, 𝑠 = 1, . . . , 𝑀𝑛 and 𝑡 = 1, . . . , 𝑃𝑛, 

consisting of data points 𝑥(𝑖, 𝑗, ℎ) with indices 𝑖 = (𝑟 − 1)𝑛 + 1, … , 𝑟𝑛 , 𝑗 =

(𝑠 − 1)𝑛 + 1, … , 𝑠𝑛, and ℎ = (𝑡 − 1)𝑛 + 1, … , 𝑡𝑛 , data are integrated to produce the 

profile 

𝑋𝑟,𝑠,𝑡(𝑘, 𝑙, 𝑚) = ∑ ∑ ∑ 𝑥((𝑟 − 1)𝑛 + 𝑖, (s − 1)n + 𝑗, (t − 1)n + ℎ)

𝑚

ℎ=1

𝑙

𝑗=1

𝑘

𝑖=1

,         𝑘, 𝑙, 𝑚 = 1, … , 𝑛 
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Again, this step should be omitted if the actual data correspond to a profile, rather 

than local fluctuations, in which case the profile segment simply consists of the 

data points 𝑋𝑟,𝑠,𝑡(𝑘, 𝑙, 𝑚) = 𝑥((𝑟 − 1)𝑛 + 𝑘, (𝑠 − 1)𝑛 + 𝑙, (𝑡 − 1)𝑛 + 𝑚), for 𝑘, 𝑙, 𝑚 =

1, … , 𝑛 . 

 

iii) Next, the local trend �̃�𝑟,𝑠,𝑡(𝑘, 𝑙, 𝑚) is captured for each segment by least-squares 

fitting to a linear (or higher-order polynomial) function of three variables, and 

subtracted from 𝑋𝑟,𝑠,𝑡(𝑘, 𝑙, 𝑚) to find the residuals, from which the detrended 

variance is calculated for each segment as 

𝐹2(𝑟, 𝑠, 𝑡, 𝑛) =
1

𝑛3
∑ ∑ ∑ (𝑋𝑟,𝑠,𝑡(𝑘, 𝑙, 𝑚) − �̃�𝑟,𝑠,𝑡(𝑘, 𝑙, 𝑚))

2
𝑛

𝑚=1

𝑛

𝑙=1

𝑛

𝑘=1

 

 

In what follows, we shall apply linear interpolation of the form 𝑎 + 𝑏𝑘 + 𝑐𝑙 + 𝑑𝑚. 

 

iv)  Finally, the fluctuation function 𝐹(𝑛) at scale 𝑛 is now calculated as  

𝐹(𝑛) = {
1

 𝑁𝑛𝑀𝑛𝑃𝑛
∑ ∑ ∑ 𝐹2(𝑟, 𝑠, 𝑡, 𝑛)

𝑃𝑛

𝑡=1

𝑀𝑛

𝑠=1

 𝑁𝑛

𝑟=1

 }

1/2

  . 

 

v) Repeating this calculation for different segment sizes again provides the 

relationship between the fluctuation function 𝐹(𝑛) and the segment size n . If long-

range correlations are present in the original data set, 𝐹(𝑛) increases with 𝑛 

according to a power law 

𝐹(𝑛)~𝑛𝛼3   

 

where the (3D DFA) scaling exponent 𝛼3 is obtained as the slope of the linear 

regression of log 𝐹(𝑛) versus log 𝑛. It describes the long-range power-law 

correlation properties of the surface and can be seen as of a measure of surface 

texture (or roughness). The value 𝛼3 = 0.5 corresponds to non-correlated volume, 

while 𝛼3 > 0.5 and 𝛼3 < 0.5 correspond to persistent and antipersistent 

correlations of the volume fluctuations. 
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2.3.4 Soil samples 
 

Soil samples were collected from a field cultivated with sugarcane and from a 

nearby native Atlantic Forest site, located in the state of Pernambuco, northeastern 

Brazilian region. The samples were obtained using a soil auger with an internal PVC 

cylinder of 7.5 cm height by 7.5 cm diameter, excavated by careful penetration with a 

cylinder coupled with a blade. After the insertion of the auger in the soil, the cylinders 

were carefully extracted to ensure the preservation of the original structure of the 

environment inside the PVC cylinders. The samples were then dried at 40°C to remove 

the water content, before the scanning tomography of the samples. The CT 

tomography was performed using a third-generation Nikon XT H 225 ST X-ray 

microtomography equipment with 150 kV voltage, 180 μA current, 500 ms exposure 

time, and a 45 μm resolution for voxels. A copper filter with a thickness of 0.5 mm was 

used to minimize low-intensity photons. After the scanning of the total cylinder volume 

in the preliminary acquisition, a subvolume of interest was defined and reconstructed 

using CTPro 3D XT 3.0.3 (Nikon Metrology NV) software. The central part of the 

cylinder was highlighted to avoid edge influence. The reconstructed 2D axial 

projections maintained the same spatial resolution of the acquisition of 45 μm, and 

were saved at a radiometric resolution (gray scale level) of 16 bits. The final volume 

was 790 stacks with 790 x 790 pixels, with an end volume of 7903= 493,039,000 voxels. 

The voxel values of the CT scan images correspond to local sample density, 

and the sequence of values in any direction is interpreted here as the integrated series, 

that is, a profile with random (but correlated) increments. Therefore, in what follows, 

the integration step is omitted in all three versions of the DFA method. Moreover, the 

vertical (gravity) direction may be here considered as naturally preferential from a 

phenomenological point of view, but we have performed calculations in all three 

directions, and have found no significant anisotropy difference. Therefore, henceforth 

only the results in the vertical direction are reported. 

 

 

2.4 Results and discussion 
 

The 1D DFA method was applied here for 790x790=624,100 vertical soil sample 

lines of length 790, across the sample area, emulating a time series of observations of 
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a virtual observer, descending down the sample at constant speed, at all the different 

points of the cross-sectional area. The descriptive statistics, the histograms, and 

spatial distribution of the 1D DFA exponents for the two samples, are presented in 

table 1, figure1 and figure 2, respectively. The 1D DFA exponent distributions are found 

to be statistically the same in all three directions (no anisotropy was observed). 

 

Table 1. Descriptive statistics of DFA exponent values for the two samples. 

 Minimum 1ºQuartile Median Mean 3ºQuartile Maximum 
Standard 
Deviation 

Sugar cane 0.1141 0.2085 0.2255 0.2272 0.2440 0.4725 0.0272 
Atlantic Forest 0.1534 0.2703 0.2907 0.2917 0.3119 0.5129 0.0311 

 

 

 

Figure 1. 1D DFA exponent value histograms for the two samples. 

 

It is seen from table 1 and figure 1 that fluctuations of soil density along the 

vertical direction are strongly antipersistent, with somewhat stronger 

pronounced antipersistence for the sugar cane sample, in comparison with the Atlantic 

Forest sample. The intricate spatial distribution of 1D DFA exponents displayed in 

figure 2 suggests that the local sugarcane soil fluctuations are somewhat more 

homogeneous than those of the Atlantic Forest. 
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Figure 2. Color coded DFA exponent values for a) sugarcane, and b) Atlantic Forest 

sample. The color coding scheme was chosen to emphasize the contrast among the 

samples, with bounds corresponding to ±1.5 standard deviations of the composite 

sample, from the composite mean. 

 

The 2D DFA method was then implemented for 790 vertical soil sample cross-

sections, of 790x790 voxels each. The descriptive statistics, the histograms, and 

vertical spatial distribution of the 2D DFA exponents for the two samples, are presented 

in table 2, figure 3, and figure 4, respectively. 

 

Table 2. Descriptive statistics of 2D DFA exponent values for the two samples. 

 Minimum 1ºQuartile Median Mean 3ºQuartile Maximum 
Standard 
Deviation 

Sugar cane 0.1625 0.1835 0.1911 0.1912 0.1978 0.2224 0.0119 

Atlantic Forest 0.2538 0.2618 0.2672 0.2699 0.2750 0.3076 0.0113 

 

 

By comparing the results of the 1D DFA presented in table 1 and the 2D DFA 

presented in table 2, we can confirm that overall the two approaches are compatible: 

they both show stronger antipersistence of local density fluctuations for the sugar cane 

sample, in comparison with that of the Atlantic Forest sample, although for both 

samples the 1D DFA yields somewhat higher exponent values (less pronounced 

antipersistence), in comparison with the 2D DFA. Moreover, the 1D DFA explores the 
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vertical antipersistence of density fluctuations across the sample cross-section, 

revealing the intricate structure of this feature for the chosen projection. 

 

 

Figure 3. 2D DFA exponent value histograms for the two samples. 

 

 

 

Figure 4. 2D DFA exponent values for the two samples, as a function of depth. 
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 Finally, the 3D DFA method yields only two exponent values of 𝑎3 = 0.2005 for 

the sugarcane sample, and 𝑎3 = 0.2696 for the Atlantic Forest, rather close to the 

means of the 2D DFA exponents given in table 2. Comparing all three methods, we 

can state here that all three yield rather similar results: all three methods indicate strong 

antipersistence of local density fluctuations, which are consistently stronger (lower 

exponent value) for the sugar cane sample, than for the Atlantic Forest. 

In terms of computational effort and memory requirements, there is no 

significant difference among the three methods described here (all calculations were 

performed on an Intel I7-6700HQ processor, in an order of several hours). All three 

methods also arrive at rather similar quantitative measures of local fluctuation 

antipersistences, confirming the consistency of the current approach. On the other 

hand, the multiple 1D approach does seem to provide the most insight into the 

phenomenon (e.g. the homogeneity and/or the spatial distribution of the 1D DFA 

exponents observed in figure 2), while sacrificing the separation of the two samples, 

observed in Figs 1 and 3. 

 

 

2.5 Conclusions 
 

In terms of comparison of the three schemes of application of the DFA method 

for three dimensional datasets, we may conclude that the three considered 

approaches: i) an N×N set of 1D DFA runs for each vertical line of length N, ii) a set of 

N 2D DFA runs for each of the N×N planes along the vertical direction, and iii) a single 

3D DFA run, all yield rather compatible results. More precisely, the 1D DFA yields 

somewhat higher DFA exponent values (indicate somewhat lower antipersistence) 

than those of the 2D and 3D DFA (which are practically the same), but the ranking of 

the results is preserved: sugar cane sample demonstrates lower exponent values 

(stronger antipersistence) than the Atlantic Forest sample, in all three cases. The fact 

that the 1D DFA exponent is somewhat higher may be seen as somewhat surprising, 

as one could well assume a priori that whatever antipersistence is observed in a one-

dimensional sample would be “weakened” when the analysis is extended to two or 

three dimensions. This could be explained by finite size scaling effects (the sheer 

sample size): in 1D DFA we are dealing with 624,100 samples of length 790, in 2D 

DFA there are 790 samples of size 7902=624,100, and for the 3D DFA there is a single 
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sample of size 7903=493,039,000. Apparently, the 2D and the 3D samples are large 

enough to capture the full level of the relation among local density fluctuations, while 

the 1D DFA does not capture the full level of antipersistence, but it provides a more 

intricate description of the spatial distribution of antipersistecne of local density 

fluctuation. As all three approaches are similar in terms of necessary computational 

effort, we may conclude that all three should be used in unison, complementing the 

phenomenological picture. 

Comparing the current study with previous works that have addressed fractal 

and multifractal properties of high resolution 2D and 3D CT scan soil samples (LUO; 

LIN, 2009; PERRET; PRASHER; KACIMOV, 2003; ROY; PERFECT, 2014; SAN 

JOSÉ MARTÍNEZ et al., 2010; TORRE et al., 2018; TORRE; LOSADA; TARQUIS, 

2018; WANG et al., 2016; ZHOU et al., 2010, 2011), it should be emphasized here that 

all these works deal with the spatial arrangement of voxels. In (LUO; LIN, 2009; 

PERRET; PRASHER; KACIMOV, 2003; SAN JOSÉ MARTÍNEZ et al., 2010; WANG 

et al., 2016) thresholding is used to extract the information on pores, and then 

boxcounting is implemented to study fractal (LUO; LIN, 2009; PERRET; PRASHER; 

KACIMOV, 2003) and multifractal (SAN JOSÉ MARTÍNEZ et al., 2010; WANG et al., 

2016) behavior. In (ZHOU et al., 2010, 2011), Zhou et al. analyze 2D high resolution 

grayscale soil sample images, wherefrom partition function is constructed to examine 

multifractal behavior. In a follow-up of this work, Roy and Perfect (ROY; PERFECT, 

2014) study 2D grayscale images 

in terms of lacunarity and multifractal behavior. Finally, Torre et al (TORRE et al., 2018; 

TORRE; LOSADA; TARQUIS, 2018) implement cube gliding on CT grayscale soil 

images to construct the partition function and therefrom derive the multifractal 

spectrum. 

 In the current work we adopt a rather different approach: we deal with local 

density fluctuations, that is, the density difference among neighboring sites (voxels). 

More precisely, consider a (tiny) observer that can freely hop from site (voxel) to site 

(another voxel), in one, two, or three dimensions. At each hop, the observer registers 

a change of density of the environment (voxel, at current experimental resolution). The 

question is: are these changes random? It turns out that they are not, instead, they are 

“antipersistent”: small changes are more likely to be followed by large changes along 

the way (in one, two or three dimensions), and vice versa. Moreover, this 

antipersistence effect is more pronounced in the sugarcane soil sample than in the 
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Atlantic Forest sample. Whatever may be the practical implications of these 

phenomenological findings remains to be seen, but as such, we believe that the current 

work provides a complementary contribution to the understanding of this extremely 

complex phenomenon: the spatial arrangement of constituent soil particles. 

Finally, it should be stressed here that the current approach of combining 1D, 

2D and 3D DFA analysis for three-dimensional images is quite general, and can be 

applied in studies of diverse phenomena. 
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3. Quantifying soil complexity using Fisher-Shannon method on 3D 

X-ray CT scans 
 

 

3.1 Abstract 
 

The conversion of native forests into agricultural land, common in many parts of the 

world, poses important questions regarding soil degradation, demanding further efforts 

to understand better the effect of land use change on soil functions. With the advent of 

3D Computed Tomography techniques and computing power, new methods are 

becoming available to address this question. In this direction, in the current work, we 

modify the Fisher-Shannon method, borrowed from information theory, to quantify the 

complexity of 12 3D CT soil samples from a sugarcane plantation and 12 samples from 

a nearby native Atlantic Forest northeastern Brazil. The distinction between the 

samples from the sugar plantation and the Atlantic Forest site is quite pronounced. The 

results at 91.7% accuracy were obtained considering the complexity of the Fisher-

Shannon plane. Atlantic Forest samples are generally more complex than those from 

the sugar plantation. 

 

Keywords: complexity, Fisher Shannon plane, land use change, X-ray CT scan soil 

samples. 

 

 

3.2 Introduction 
 

The degradation of soils due to land use changes driven by economic factors 

represents a major concern in many parts of the world for the foreseeable future. Land 

use change may adversely affect fundamental soil functions such as nutrient storage, 

diffusion and cycling, carbon storage and greenhouse gas emissions, erosion 

resistance, water storage, drainage, and filtration (BREUER; PAPEN; BUTTERBACH-

BAHL, 2000; LABRIÈRE et al., 2015; TELLES et al., 2003; WILCKE et al., 2002; 

WOHL et al., 2012). Moreover, the biodiversity of forests may also be unfavourably 

affected by systematic land use change (FUJII et al., 2018). On the other hand, poverty 

and population growth lead to an ever-increasing demand for indiscriminate natural 
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resources in developing countries. The demand for pasture, timber, firewood, and 

crops drives the conversion of tropical forests into agricultural land at an alarming rate. 

This situation dictates comprehensive studies on the impact of deforestation and land 

use conversion on soil quality in general. More precisely, the outstanding question is 

whether the cultivation of deforested land may lead to the permanent degradation of 

land productivity. The ecologically sensitive components of the tropical ecosystem may 

not buffer the effects of agricultural practices, see, e.g. (ISLAM; WEIL, 2000) and 

references therein. Therefore, a comprehensive assessment of soil properties is 

fundamental for the early detection and mitigation of adverse soil change effects. 

The effects of land use change have been addressed mainly focusing on 

physical, chemical, and biological properties (ISLAM; WEIL, 2000; LEMENIH; 

KARLTUN; OLSSON, 2005; MAHARJAN et al., 2017), while far fewer studies have 

been devoted to changes in soil structure (WANG et al., 2019; ZHOU et al., 2012). The 

latter governs its functions (RABOT et al., 2018), and quantification of soil architecture 

can be seen as a key to better understanding the complex dynamical phenomena that 

govern these functions. Therefore, a comprehensive description and quantification of 

soil functions rely on an in-depth understanding of the characteristics such as the three-

dimensional distribution of constituents, connectedness, hierarchical organization, and 

complexity. 

While X-ray computed tomography (CT) has been advancing at an impressive 

rate over the last decades, it has also become a widespread tool for non-destructive 

3D soil visualization and quantification, shedding new light on soil functions 

(HELLIWELL et al., 2013). Diverse properties of soil that have not been previously 

amenable to analyses can now be assessed through CT scans, providing novel 

fundamental insights into soil functions (HELLIWELL et al., 2013). These properties 

include isotropy, homogeneity, complexity, and hierarchical fractal (or multifractal) 

organization of soil constituents. They contribute to a deeper understanding of soil’s 

physical, chemical, and biological processes (SCHLÜTER et al., 2018). X-ray CT 

scans have already been studied to characterize the pores spatial distribution, 

revealing the extraordinary complexity of the pore space (GALDOS et al., 2019; 

JUAREZ et al., 2013; PIRES et al., 2019; SANTOS et al., 2020). The complexity of soil 

structure has also been addressed through methods based on concepts from statistical 

physics and information theory, such as fractals and multifractals (PERRET; 

PRASHER; KACIMOV, 2003; SAN JOSÉ MARTÍNEZ et al., 2010; WANG et al., 2016), 
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information content (TORRE et al., 2020) and complex networks (CÁRDENAS et al., 

2010; SAMEC et al., 2013). As a consensus has not yet been reached on the adequate 

threshold for separating pores from solids in CT scans (TARQUIS et al., 2009), it has 

also been suggested that rather than thresholding, grayscale soil images should be 

used for multifractal characterization of the soil structure (ROY; PERFECT, 2014; 

TORRE et al., 2018; TORRE; LOSADA; TARQUIS, 2018; ZHOU et al., 2010, 2011). 

Between 2000 and 2018, Brazil suffered a total reduction of 489,877 km2 in the 

natural area of its six terrestrial biomes. Among them, the Atlantic Forest biome is the 

one with the highest percentage of degradation over time, as it covers the most 

industrialized and productive areas, in addition to having the highest demographic 

density in the national territory, housing about 49.3% of the urban areas of the country 

(IBGE, 2020). One of the crops that stands out in the Atlantic Forest biome is 

sugarcane, especially in the country's northeast region, where cultivation is present in 

eight of the nine states in the region. For the 2020/2021 harvest, an increase of 1.6% 

in the planted area and 4.1% in production were estimated compared to the previous 

sugarcane harvest in the northeastern region of Brazil (CONAB, 2020). The 

replacement of the native vegetation of the Atlantic Forest with sugarcane cultivation 

generates negative impacts on the physical attributes of the soil (BORDONAL et al., 

2018; CASTIONI et al., 2018; CAVALCANTI et al., 2020; ORTIZ et al., 2017). These 

attributes control many soil functions, such as water retention and infiltration, gas 

exchange, resistance to erosion, nutrient dynamics, and root penetration (RABOT et 

al., 2018), and directly influence ecosystem services. 

In this work, we investigate how land use change affects soil structure using 

information theory to quantify the complexity of soil 3D X-ray CT soil samples. For the 

first time, the Fisher-Shannon method (VIGNAT; BERCHER, 2003), introduced to 

jointly quantify the local and global properties of the probability density function of 

unidimensional signals, is applied in the context of soil complexity. In the current study, 

the “signals” are represented by a 790x790 set of 1D vertical lines of 790 greyscale 

values in X-ray CT scan images of soil samples from a sugarcane field and a nearby 

Atlantic Forest site in northeastern Brazil. For each image and each of these 

sequences, we calculate Shannon entropy power (SEP) and Fisher information 

measure (FIM) that quantify the disorder and structural organization of the signal’s 

variation (MARTIN; PENNINI; PLASTINO, 1999). The joint FIM/SEP analysis is then 

performed through the Fisher-Shannon information plane (FS) through an innovative 



36 
 

normalization procedure to achieve a 91.7% level of accuracy of distinction between 

the sugar plantation and the Atlantic Forest samples. 

 

 

3.3 Methodology 

 

3.3.1 Soil samples 

 

Twenty-four soil samples analyzed in this work were collected from sugarcane 

cultivation and a nearby native Atlantic Forest in the northeastern Brazilian region, 

Pernambuco. The site is between latitudes -7.84836 -7.83519, and longitudes -

34.9973 and -34.9935, as shown in figure 1. Two samples were collected at each site, 

at 10cm and 20cm depth. 

 

 

Figure 1. Spatial distribution of sample sites, two samples were taken at each site, at 

10 and 20cm depth. 

 

The samples were collected using a soil auger with an internal PVC cylinder of 

7.5cm height and 7.5cm diameter, excavated by careful penetration with a cylinder 

coupled with a blade. After the insertion of the auger in the soil, the cylinders were 

carefully extracted to ensure the preservation of the original structure of the 

environment inside the PVC cylinders. The samples were then dried at 40°C to remove 

the water content before the scanning tomography of the samples. 
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The CT tomography was performed using a third-generation Nikon XT H 225 

ST X-ray microtomography with 150kV voltage, 180μA current, 500ms exposure time, 

and a 45μm resolution for voxels. A copper filter with a thickness of 0.5 mm was used 

to minimize low-intensity photons. After scanning the total cylinder volume in the initial 

acquisition, a sub-volume of interest was defined and reconstructed using CTPro 3D 

XT 3.0.3 (Nikon Metrology NV) software. The central part of the cylinder was 

highlighted to avoid edge influence. The reconstructed 2D axial projections maintained 

the spatial resolution of the acquisition of 45μm and were saved at a radiometric 

resolution (grayscale level) of 16 bits. The final volume was 790 stacks with 790 x 790 

pixels, with an end volume of 7903= 493,039,000 voxels. 

The voxel values of the CT scan images correspond to the local sample density. 

Considering the vertical (gravity) direction as naturally preferential from a 

phenomenological point of view, we perform calculations on 790x790=624,100 vertical 

lines of 790 grey-level values each for every sample. 

 

3.3.2 The Fisher-Shannon method 
 

The Fisher-Shannon method consists of a joint analysis of Fisher information 

measure (FIM), which quantifies the amount of organization (or order) in a signal, and 

Shannon entropy (SE) which quantifies the amount of disorder (VIGNAT; BERCHER, 

2003). Fisher introduced the FIM concept in the statistical theory estimation (FISHER, 

1925). It was subsequently used to describe physical systems (ESTAÑÓN et al., 2020; 

FRIEDEN, 1990), as well as for time series analysis in geophysics (MORENO-

TORRES et al., 2018; SULEIMANOV; GUSEINOVA, 2019), ecology (BA et al., 2020), 

astrophysics (LOVALLO; TELESCA, 2011), meteorology (PIERINI et al., 2016; 

STOSIC; TELESCA; STOSIC, 2021), hydrology (DA SILVA et al., 2021) and social 

science (LI et al., 2020). 

For a continuous one-dimensional variable 𝑋 with probability density function 

(PDF) 𝑓(𝑥), the Fisher information measure 𝐼𝑋 is defined as (LI et al., 2020) 

 

𝐼𝑥 = ∫ (
𝜕

𝜕𝑥
𝑓(𝑥))

2
∞

−∞

1

𝑓(𝑥)
𝑑𝑥      ,                                                   (1) 
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and Shannon entropy 𝐻𝑋 as 

 

𝐻𝑥 = − ∫ 𝑓(𝑥) log 𝑓(𝑥)𝑑𝑥

∞

−∞

    .                                                      (2) 

 

The Fisher information measure thus describes the local properties of the PDF, 

while the Shannon entropy describes its global properties (LI et al., 2020). The shape 

of the PDF is reflected in these measures, as the FIM assumes high values if the PDF 

is narrow and low values if the PDF is broad, while SE attains high values for a broad 

PDF and low values for a narrow PDF. 

Instead of Shannon entropy, it is often more convenient (ANGULO; ANTOLÍN; 

SEN, 2008) to use the quantity called Shannon entropy power (SEP), defined by 

 

𝑁𝑥 =
1

2𝜋𝑒
𝑒2𝐻𝑥        .                                                                   (3) 

 

The product 𝐶𝑋 = 𝑁𝑋 ∙ 𝐼𝑋 satisfies “isoperimetric inequality” 𝑁𝑋 ∙ 𝐼𝑋 ≥ 1 (where 

equality holds for the Normal distribution), demonstrating that FIM and Shannon 

entropy are intrinsically related and can be jointly used to characterize the non-

stationary behavior of complex signals. The product 𝑁𝑋𝐼𝑋 is called Fisher Shannon 

complexity (FSC) and can be used as the statistical measure of complexity of the signal 

under study (DEMBO; COVER; THOMAS, 1991). The joint FIM/SEP analysis is 

performed through the Fisher Shannon information plane (FS), where Shannon 

entropy power 𝑁𝑋 is used for the horizontal axes, and Fisher information measure 𝐼𝑋 

is taken for the vertical axis variable (VIGNAT; BERCHER, 2003). The signal is 

mapped to the point with coordinates (𝑁𝑋 , 𝐼𝑋) which can lie anywhere in the FS plane 

where the “isoperimetric inequality” 𝑁𝑋𝐼𝑋 ≥ 1  is satisfied. The distance from the 

“isocomplexity” line 𝑁𝑋𝐼𝑋 = 1   can be used as a measure of the complexity of the signal 

(LI et al., 2020). 

As the above measures depend only on the PDF, Fisher-Shannon analysis can 

be implemented for real-world datasets corresponding to complex systems through 

nonparametric density estimation, avoiding parametric assumptions on the distribution. 
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One possibility is using histograms with the discretized version of (1) and (2). However, 

in this work, we implement kernel density estimation, which is more reliable (TELESCA; 

LOVALLO, 2017) in the current case. The Kernel density estimator of the PDF is given 

by (RAYKAR; DURAISWAMI, 2006) 

 

𝑓𝑀(𝑥) =
1

𝑁𝑏
∑ 𝑘 (

𝑥 − 𝑥𝑖

𝑏
)       ,

𝑁

𝑖=1

                                           (4)   

 

where 𝑏 > 0 is the so-called bandwidth parameter, 𝑁 is the length of the signal, and 

𝐾(𝑢) is the kernel function, a continuous symmetric function that satisfies 𝐾(𝑢) ≥ 0   

and ∫ 𝐾(𝑢)𝑑𝑢 = 1
+∞

−∞
. The most widely used is the Gaussian kernel 𝑘(𝑢) =

(2𝜋)−1 2⁄ 𝑒𝑥𝑝 (−𝑢2 2⁄ ) yielding 

 

𝑓𝑀(𝑥) =
1

𝑁𝑏√2𝜋
∑ 𝑒

−
(𝑥−𝑥𝑖)2

2𝑏2     .

𝑁

𝑖=1

                                        (5) 

 

 

3.4 Results and discussion 
 

 The 𝐼𝑥, 𝑁𝑥 and 𝐶𝑥values were calculated for each of the 624,100 vertical lines 

of length 790 for all the 24 CT scan images and for the 790 horizontal planes of 

790x790=624,100 voxels each, and for the full 7903= 493,039,000 voxel images. After 

extensive testing with different combinations of quantities and distribution measures 

that can be extracted from these calculations, we have found that the first option of 

considering the set of vertical lines for each sample yields the best distinction between 

the sugar cane and the Atlantic Forest samples. The descriptive statistics (minimum, 

maximum, quartiles, mean, and standard deviation) of the 𝐼𝑥, 𝑁𝑥 and 𝐶𝑥values of 

vertical lines are presented in Tables I, II and III, respectively, and the distribution of 

the values in the 790x790 plane for all samples are presented in Figs. 2, 3 and 4.  
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Table 1. Descriptive Statistics of Fisher Information Measure 𝐼𝑥. 

 

Table 2. Descriptive Statistics of Shannon entropy power 𝑁𝑥. 

 

 min Q1 Q2 Q3 max mean stdev 

Atlantic forest 

AF1-10 4.24E-06 6.07E-06 6.50E-06 7.01E-06 1.62E-05 6.62E-06 8.67E-07 

AF2-10 3.53E-06 6.79E-06 7.52E-06 8.40E-06 1.76E-05 7.70E-06 1.29E-06 

AF3-10 3.65E-06 6.28E-06 6.89E-06 7.64E-06 1.79E-05 7.05E-06 1.09E-06 

AF4-10 3.31E-06 6.54E-06 7.14E-06 7.89E-06 1.69E-05 7.34E-06 1.19E-06 

AF5-10 4.13E-06 7.13E-06 7.90E-06 8.81E-06 2.02E-05 8.08E-06 1.36E-06 

AF6-10 3.79E-06 9.58E-06 1.07E-05 1.19E-05 2.59E-05 1.08E-05 1.86E-06 

AF1-20 4.51E-06 7.46E-06 8.14E-06 8.86E-06 1.46E-05 8.20E-06 1.03E-06 

AF2-20 3.32E-06 8.10E-06 9.02E-06 1.01E-05 1.78E-05 9.15E-06 1.47E-06 

AF3-20 3.45E-06 7.63E-06 8.37E-06 9.20E-06 1.74E-05 8.47E-06 1.19E-06 

AF4-20 3.93E-06 7.47E-06 8.20E-06 9.04E-06 1.58E-05 8.31E-06 1.18E-06 

AF5-20 3.69E-06 7.33E-06 8.18E-06 9.21E-06 1.82E-05 8.37E-06 1.50E-06 

AF6-20 4.08E-06 8.11E-06 9.08E-06 1.02E-05 1.82E-05 9.22E-06 1.54E-06 

Sugarcane 

SC1-10 4.91E-06 8.15E-06 8.76E-06 9.40E-06 1.45E-05 8.80E-06 9.37E-07 

SC2-10 3.24E-06 8.35E-06 9.35E-06 1.05E-05 2.02E-05 9.47E-06 1.60E-06 

SC3-10 3.57E-06 9.05E-06 9.78E-06 1.05E-05 1.61E-05 9.81E-06 1.13E-06 

SC4-10 4.52E-06 9.02E-06 9.77E-06 1.06E-05 1.71E-05 9.83E-06 1.16E-06 

SC5-10 4.01E-06 9.22E-06 1.01E-05 1.10E-05 1.82E-05 1.01E-05 1.31E-06 

SC6-10 3.67E-06 1.07E-05 1.17E-05 1.27E-05 1.94E-05 1.17E-05 1.45E-06 

SC1-20 5.11e-06 1.03e-05 1.11e-05 1.19e-05 1.72e-05 1.11e-05 1.15e-06 

SC2-20 3.51E-06 8.54E-06 9.36E-06 1.02E-05 1.81E-05 9.43E-06 1.30E-06 

SC3-20 3.46E-06 9.87E-06 1.07E-05 1.15E-05 1.78E-05 1.07E-05 1.24E-06 

SC4-20 3.96E-06 7.93E-06 8.71E-06 9.57E-06 1.72E-05 8.81E-06 1.26E-06 

SC5-20 3.71E-06 9.17E-06 1.01E-05 1.11E-05 1.79E-05 1.01E-05 1.43E-06 

SC6-20 6.56E-06 1.27E-05 1.41E-05 1.56E-05 2.68E-05 1.42E-05 2.17E-06 

 min Q1 Q2 Q3 max mean stdev 

Atlantic forest 

AF1-10 1.24E+05 2.14E+05 2.37E+05 2.62E+05 4.10E+05 2.39E+05 3.53E+04 

AF2-10 7.07E+04 1.84E+05 2.11E+05 2.39E+05 6.14E+05 2.13E+05 4.03E+04 

AF3-10 7.43E+04 1.92E+05 2.17E+05 2.44E+05 6.00E+05 2.20E+05 3.99E+04 

AF4-10 9.73E+04 1.85E+05 2.09E+05 2.37E+05 6.23E+05 2.15E+05 4.63E+04 

AF5-10 8.54E+04 1.76E+05 2.03E+05 2.34E+05 3.88E+05 2.06E+05 4.05E+04 

AF6-10 5.55E+04 1.04E+05 1.30E+05 1.65E+05 4.34E+05 1.38E+05 4.11E+04 

AF1-20 7.64E+04 1.30E+05 1.45E+05 1.62E+05 3.72E+05 1.48E+05 2.40E+04 

AF2-20 6.30E+04 1.22E+05 1.39E+05 1.60E+05 7.27E+05 1.43E+05 3.08E+04 

AF3-20 5.92E+04 1.25E+05 1.41E+05 1.58E+05 9.73E+05 1.44E+05 2.84E+04 

AF4-20 7.90E+04 1.40E+05 1.58E+05 1.82E+05 3.96E+05 1.64E+05 3.44E+04 

AF5-20 6.98E+04 1.47E+05 1.72E+05 2.03E+05 5.56E+05 1.78E+05 4.29E+04 

AF6-20 5.91E+04 1.18E+05 1.36E+05 1.58E+05 5.51E+05 1.39E+05 2.98E+04 

Sugarcane 

SC1-10 7.31E+04 1.19E+05 1.29E+05 1.41E+05 3.03E+05 1.31E+05 1.71E+04 

SC2-10 6.34E+04 1.40E+05 1.72E+05 2.13E+05 9.73E+05 1.79E+05 5.13E+04 

SC3-10 6.82E+04 1.06E+05 1.16E+05 1.29E+05 8.74E+05 1.20E+05 2.02E+04 

SC4-10 6.50E+04 1.05E+05 1.15E+05 1.28E+05 4.23E+05 1.17E+05 1.82E+04 

SC5-10 6.23E+04 1.02E+05 1.14E+05 1.31E+05 4.34E+05 1.20E+05 2.60E+04 

SC6-10 5.43E+04 8.70E+04 9.63E+04 1.08E+05 7.01E+05 9.86E+04 1.63E+04 

SC1-20 6.05E+04 9.01E+04 9.72E+04 1.05E+05 3.58E+05 9.84E+04 1.22E+04 

SC2-20 5.79E+04 1.12E+05 1.26E+05 1.43E+05 1.05E+06 1.30E+05 2.68E+04 

SC3-20 5.88E+04 9.36E+04 1.02E+05 1.12E+05 1.10E+06 1.04E+05 1.54E+04 

SC4-20 6.46E+04 1.24E+05 1.39E+05 1.57E+05 4.46E+05 1.43E+05 2.69E+04 

SC5-20 5.79E+04 1.00E+05 1.12E+05 1.27E+05 5.15E+05 1.17E+05 2.52E+04 

SC6-20 3.83E+04 7.48E+04 8.49E+04 9.66E+04 2.19E+05 8.69E+04 1.72E+04 
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Table 3. Descriptive Statistics of Fisher-Shannon complexity 𝐶𝑥. 

 

In order to address the distance from the iso-complexity line 𝑁𝑋𝐼𝑋 = 1 as a 

measure of the complexity of the vertical sample lines (LI et al., 2020), it should be 

noted that the scales of Shannon entropy power with an average of 〈𝑁𝑥〉 = 1.497 × 105 

and Fisher Information with average 〈𝐼𝑥〉 = 9.307 × 10−6 differ in orders of magnitude, 

while the average the Fisher-Shannon complexity 〈𝐶𝑥〉 = 1.317 is of the order of unity. 

If the projection of a point (𝑁𝑋 , 𝐼𝑋) in the FS plane presented in figure 5a to the nearest 

point on the “isocomplexity” line is denoted by (𝑁𝑋0, 𝐼𝑋0), then the displacement of 

Shannon Information Δ𝐼𝑋 ≡ 𝐼𝑋 − 𝐼𝑋0 turns negligible in comparison with the 

displacement of Shannon entropy power Δ𝑁𝑋 ≡ 𝑁𝑋 − 𝑁𝑋0, and by minimizing the 

distance to the iso-complexity line, the points are projected vertically down to the 

isocomplexity line, and the Euclidean distance is practically reduced to Δ𝑁𝑋, with no 

influence of Δ𝐼𝑋. 

 

 

 

 min Q1 Q2 Q3 max mean stdev 

Atlantic forest 

AF1-10 1.05E+00 1.36E+00 1.51E+00 1.72E+00 4.30E+00 1.58E+00 3.22E-01 

AF2-10 1.02E+00 1.36E+00 1.53E+00 1.79E+00 4.61E+00 1.63E+00 3.89E-01 

AF3-10 1.03E+00 1.33E+00 1.46E+00 1.65E+00 4.13E+00 1.54E+00 3.11E-01 

AF4-10 1.03E+00 1.30E+00 1.44E+00 1.68E+00 5.08E+00 1.58E+00 4.53E-01 

AF5-10 1.02E+00 1.35E+00 1.54E+00 1.84E+00 4.69E+00 1.65E+00 4.22E-01 

AF6-10 1.01E+00 1.14E+00 1.32E+00 1.64E+00 5.48E+00 1.47E+00 4.74E-01 

AF1-20 1.01E+00 1.12E+00 1.17E+00 1.24E+00 2.29E+00 1.19E+00 1.00E-01 

AF2-20 1.01E+00 1.14E+00 1.21E+00 1.33E+00 4.13E+00 1.29E+00 2.69E-01 

AF3-20 1.01E+00 1.11E+00 1.16E+00 1.23E+00 4.13E+00 1.20E+00 1.61E-01 

AF4-20 1.01E+00 1.18E+00 1.27E+00 1.40E+00 3.58E+00 1.34E+00 2.55E-01 

AF5-20 1.01E+00 1.22E+00 1.34E+00 1.55E+00 4.85E+00 1.47E+00 4.17E-01 

AF6-20 1.01E+00 1.13E+00 1.21E+00 1.31E+00 2.71E+00 1.25E+00 1.68E-01 

Sugarcane 

SC1-10 1.01E+00 1.09E+00 1.12E+00 1.17E+00 2.00E+00 1.14E+00 7.35E-02 

SC2-10 1.01E+00 1.29E+00 1.50E+00 1.91E+00 4.44E+00 1.68E+00 5.32E-01 

SC3-10 1.01E+00 1.08E+00 1.12E+00 1.20E+00 3.55E+00 1.16E+00 1.19E-01 

SC4-10 1.01E+00 1.08E+00 1.11E+00 1.17E+00 2.38E+00 1.14E+00 9.14E-02 

SC5-10 1.01E+00 1.08E+00 1.12E+00 1.21E+00 3.79E+00 1.19E+00 2.29E-01 

SC6-10 1.00E+00 1.07E+00 1.11E+00 1.17E+00 2.87E+00 1.14E+00 1.02E-01 

SC1-20 1.00E+00 1.05E+00 1.07E+00 1.10E+00 1.97E+00 1.08E+00 5.51E-02 

SC2-20 1.01E+00 1.10E+00 1.16E+00 1.25E+00 4.03E+00 1.20E+00 1.43E-01 

SC3-20 1.01E+00 1.05E+00 1.08E+00 1.12E+00 4.82E+00 1.10E+00 6.40E-02 

SC4-20 1.01E+00 1.14E+00 1.20E+00 1.28E+00 3.19E+00 1.23E+00 1.34E-01 

SC5-20 1.01E+00 1.08E+00 1.12E+00 1.19E+00 3.36E+00 1.15E+00 1.27E-01 

SC6-20 1.00E+00 1.11E+00 1.18E+00 1.27E+00 2.73E+00 1.20E+00 1.28E-01 
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Figure 2. Spatial distribution of the 𝐼𝑥 values in the horizontal projection plane for 

each sample. Pixels are colour-coded in blue below two standard deviations from the 

global average and red for values above two standard deviations. A spectrum of colors 

is used for values in between, as per the colour bar. 
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Figure 3. Spatial distribution of the 𝑁𝑥 values in the horizontal projection plane for 

each sample. Pixels are colour-coded in blue below two standard deviations from the 

global average and red for values above two standard deviations. A spectrum of colors 

is used for values in between, as per the colour bar. 
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Figure 4. Spatial distribution of the 𝐶𝑥 values in the horizontal projection plane for 

each sample. Pixels are colour-coded in blue below two standard deviations from the 

global average and red for values above two standard deviations. A spectrum of colors 

is used for values in between, as per the colour bar. 
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 To mitigate this fact, here we introduce a novel normalization procedure for the 

variables 𝑁𝑋 and 𝐼𝑋. More precisely, first, we identify the maximum value 𝑁𝑋𝑚𝑎𝑥 among 

all the samples, and we scale all the sample values as 𝑁𝑋
′ = 𝑁𝑋/𝑁𝑋𝑚𝑎𝑥 and 𝐼𝑋

′ =

𝐼𝑋𝑁𝑋𝑚𝑎𝑥, thus preserving the 𝐶𝑥 ≡ 𝑁𝑋𝐼𝑋 complexity values. Distance from a point 

(𝑁𝑋
′ , 𝐼𝑋

′ ) to a projection point (𝑁𝑋𝐼
′ , 𝐼𝑋𝐼

′ ) on the isocomplexity plane is now given by 

 

𝑑 = √(𝑁𝑋
′ − 𝑁𝑋𝐼

′ )2 + (𝐼𝑋
′ −

1

𝑁𝑋𝐼
′ )

2

      ,                       (6) 

 

and setting the derivative of  𝑑 concerning 𝑁𝑋𝐼
′  to zero to find the closest point (𝑁𝑋0

′ , 𝐼𝑋0
′ ) 

yields the fourth-order polynomial expression for 𝑥 ≡ 𝑁𝑋0
′ ≡ 1/𝐼𝑋0

′  

 

𝑥4 − 𝑥3𝑁𝑋
′ + 𝑥𝐼𝑋

′ − 1 =  0     ,                                 (7) 

 

which is solved numerically for all samples. The results of this novel procedure are 

presented in figure 5b, and the distances scatterplot from the iso-complexity plane is 

presented in figure 6. 

 

 

Figure 5 a) Scatterplot of the original (𝑁𝑋 , 𝐼𝑋) value pairs, and b) a scatterplot of the 

normalized values (𝑁𝑋
′ , 𝐼𝑋

′ ), together with projections (𝑁𝑋0
′ , 𝐼𝑋0

′ ) to the closest point on 

the iso-complexity line. 
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The Sugarcane sample’s complexity, quantified by the distance from the iso-

complexity line (figures 4 and 5), is generally lower than those of the Atlantic Forest 

samples, exhibiting large fluctuations between the alternative values from samples 

taken at 10cm and 20cm depth. The complexity values are presented in Table IV. 

 

Figure 6 The distances scatterplot from the iso-complexity line, in the order of samples 

from south to north. 

 

Table 4. Complexity (distance from the isocomplexity plane). 

 

 

 

 

 

 

 

 

 

Sugarcane 

SC1-10 SC2-10 SC3-10 SC4-10 SC5-10 SC6-10 

0.0676 0.2899 0.0696 0.0619 0.0825 0.0531 

SC1-20 SC2-20 SC3-20 SC4-20 SC5-20 SC6-20 

0.0342 0.0951 0.0420 0.1144 0.0714 0.0660 

Atlantic forest 

AF1-10 AF2-10 AF3-10 AF4-10 AF5-10 AF6-10 

0.3290 0.3198 0.2961 0.3022 0.3179 0.1799 

AF1-20 AF2-20 AF3-20 AF4-20 AF5-20 AF6-20 

0.0998 0.1341 0.1032 0.1704 0.2294 0.1215 
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 To demonstrate the validity of this novel approach, we show in figure 7 the 3D 

images of the two samples with the lowest and highest complexity, respectively. 

 

 

Figure 7. Samples SC1_20 with d=0.0342 (left), and AF1_10 with d=0.329 (right), at 

a threshold of 1500 Hounsfield units. 

 

The current approach, without arbitrary parameters (e.g., threshold), yields 

results that agree well with a visual observation (as seen in figure 5) and provides a 

precise quantitative measure of the samples’ complexity. The usefulness of this 

approach for quantifying soil degradation should be tested in future studies in the 

natural environment and controlled laboratory experiments. 

Finally, to test the discriminative power of the current approach, we implement 

here the fitting of values from table 4 to a logistic function, where a categorical variable 

of zero value is attributed to the sugarcane samples and unit value to the Atlantic 

Forest samples, with results shown in figure 8. 

Considering logistic regression as a binary classifier, the threshold of d=0.0952 

separates the two groups of samples, with only two samples (SC2-10 and SC4-20) 

falling into the wrong category. It should be noted here that the k-means method does 

not produce meaningful results in this case because of the difference in the variance 

of the d values of the two groups, which is much smaller for the sugarcane samples 

than for the Atlantic Forest samples. 
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Figure 8. Fit to a logistic function. The vertical dashed line represents the threshold 

𝑑 = 0.0952. 

 

 Observing the images of 𝐼𝑥, 𝑁𝑥 and  𝐶𝑥 of the spatial distribution of these 

samples in Figs. 2, 3 and 4 reveals that the origin of the strikingly high value of 𝑑 =

0.290 for sample SC2-10 stems from the pronounced values of Shannon entropy 

power 𝑁𝑋. This entropy, in combination with Information, measures values 𝐼𝑋 yield 

Fisher-Shannon complexity 𝐶𝑋 for each of the 624,100 vertical lines, somewhat similar 

to those of the Atlantic Forest samples. Therefore, a correct grouping of 22 out of 24 

samples (91.7%) is attained, demonstrating the power of the current novel 

nonparametric approach. 

 

 

3.5 Conclusions 
 

Overall, we can claim that the Fisher-Shannon complexity captures the 

morphological changes induced by land-use change relatively well. More precisely, the 

sugarcane field sites lie in an area converted from an Atlantic Forest to a plantation. 
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The subsequent cultivation activities have brought about changes in the soil 

morphology. While the results are not entirely consistent regarding depth and/or 

position, the 91.7% grouping success rate may be considered relatively high, where 

the discrepancies may be attributed to some yet unknown particularities of these sites.  

The approach introduced in the current work does not use arbitrary parameters. 

It provides a rather precise quantitative complexity measure, which may be seen as a 

quantifier of soil degradation level. Finally, the novel normalization procedure of 

variables for representation in the Fisher-Shannon information plane, preserving the 

Fisher-Shannon complexity, may be helpful for general time series and image analysis. 
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4. Final considerations 
 

 

 In this work two methods, originally used for the analysis of complex signals, 

Detrended Fluctuation Analysis (DFA) and Fisher-Shannon method (FS), were applied 

for the first time in the context of innovative analysis of 3D tomographic images of soil. 

The methods were adapted for image analysis in general, in this case 3D CT images 

of soil samples from undisturbed sites covered by Atlantic Forest and sites that 

undergo soil degradation due to land cover change (replacement of native Atlantic 

Forest vegetation by sugarcane).  

Each 3D image contains NxNxN gray level voxel values (N=790) so 1D DFA 

was applied on NxN vertical lines of length N, 2D DFA on N planes of size NxN along 

the vertical direction, and 3D DFA on the whole NxNxN dataset. In all cases the values 

of DFA exponents were found to be smaller than 0.5 indicating antipersistence of local 

density fluctuations, which are consistently stronger (lower exponent value) for the 

sugar cane plantation sample, than for the Atlantic Forest. 

The FS method was applied on NxN vertical lines of length N (N=790) for 24 3D 

soil images (12 samples from Atlantic Forest and 12 samples from sugarcane 

plantation, obtained at 10cm and 20 cm depth).  For each vertical line the FS 

information quantifiers Shannon entropy and Fisher information measure were 

calculated, and a novel method is introduced here for their proper normalization, 

preserving the Fisher Shannon complexity. In this way a complexity measure is defined 

as the distance from the isocomplexity line in the normalized FS plane, which may be 

seen as a quantifier of soil degradation level. This novel approach resulted in a high 

grouping success rate (91.7%) between soil covered by native vegetation (Atlantic 

Forest) and soil that was the subject of degradation process as the consequence of 

land use change (from native Atlantic Forest to sugarcane cultivation).  

To achieve the proposed objectives in this work, two programs were developed 

in C programming language, one that implements the DFA (1D, 2D, and 3D) and the 

other that implements the FS method, both suitable for 3D tomographic image data 

from soil samples. While each image is composed of 790x790x790 16-bit voxels, 

totaling 986,078,000 bytes, on one of the computers used in data processing with an 

I7-7700HQ 2.80GHz processor with 16 GB of RAM, the processing time for each image 

in the DFA method was relatively short, approximately 90 seconds. The processing 
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time for each image using the FS method on the same computer was relatively high, 

around 5 hours. For this reason, parallel processing of 4 images simultaneously was 

implemented in the case of the FS method. 

The results of this work showed that some methods that are used for the 

analysis of one-dimensional signals can be adapted for the analysis of 2D and 3D 

images. The suggestion for future work for investigation of soil degradation by analysis 

of 3D tomographic images from undisturbed and disturbed sites are the use of 

Multifractal detrended fluctuation analysis (MFDFA) in its original 1D form and its 2D 

and 3D generalization.  Along the information of persistency of density fluctuations 

obtained by DFA, MFDFA also provides the information about the dominance of 

large/small fluctuations and the degree of signal multifractality (trough the set of 

parameters of the multifractal spectrum) and these properties could be used as a 

“fingerprint” of analyzed images. Other methods such as Visibility Graph and 

Recurrence Plot (together with Recurrence quantification analysis) that provide the set 

of quantitative measures that describe signal complexity could also be tested for image 

analysis in general.  

In summary, considering the continuous advent of non-invasive X-ray 

tomographic methods over the last decades, together with the exponential growth of 

accessible computer power, the spectrum of techniques from other fields of knowledge 

(such as complex systems theory, information theory, complex networks and statistical 

physics) that may be adapted for soil sample analysis is rapidly growing, promising 

novel complementary insights into the intricate structure of soil. The current work 

should be therefore understood as a contribution in this direction, where two well-

known methods originally used for the analysis of complex signals were adapted for 

this purpose. 
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5. Supplementary information 
 

 

Table 1: Characteristics and coordinates of soil samples. 

Sample Land use Depth (cm) Soil type Latitude Longitude 

AF1-10 Atlantic Forest 10 Spodosol -7.84791 -34.99660 

AF2-10 Atlantic Forest 10 Argisol -7.84562 -34.99575 

AF3-10 Atlantic Forest 10 Spodosol -7.84396 -34.99542 

AF4-10 Atlantic Forest 10 Latosol -7.84084 -34.99511 

AF5-10 Atlantic Forest 10 Latosol -7.83650 -34.99666 

AF6-10 Atlantic Forest 10 Latosol -7.83527 -34.99729 

AF1-20 Atlantic Forest 20 Spodosol -7.84791 -34.99660 

AF2-20 Atlantic Forest 20 Latosol -7.84562 -34.99575 

AF3-20 Atlantic Forest 20 Latosol -7.84396 -34.99542 

AF4-20 Atlantic Forest 20 Latosol -7.84084 -34.99511 

AF5-20 Atlantic Forest 20 Latosol -7.83650 -34.99666 

AF6-20 Atlantic Forest 20 Latosol -7.83527 -34.99729 

SC1-10 Sugarcane 10 Spodosol -7.84836 -34.99551 

SC2-10 Sugarcane 10 Argisol -7.84583 -34.99483 

SC3-10 Sugarcane 10 Spodosol -7.84441 -34.99428 

SC4-10 Sugarcane 10 Latosol -7.83860 -34.99346 

SC5-10 Sugarcane 10 Latosol -7.83610 -34.99610 

SC6-10 Sugarcane 10 Latosol -7.83519 -34.99612 

SC1-20 Sugarcane 20 Spodosol -7.84836 -34.99551 

SC2-20 Sugarcane 20 Argisol -7.84583 -34.99483 

SC3-20 Sugarcane 20 Spodosol -7.84441 -34.99428 

SC4-20 Sugarcane 20 Latosol -7.83860 -34.99346 

SC5-20 Sugarcane 20 Latosol -7.83610 -34.99610 

SC6-20 Sugarcane 20 Latosol -7.83519 -34.99612 
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