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Abstract
This thesis presents a new algorithm to generate synthetic wind speed data using Markov chains
and the Acceptance-Rejection Method. Traditionally, to simulate wind speed data using Finite
Markov chains, states are represented by classes of values and, after selecting a using the
transition matrix, a uniform random number is generated within the boundaries of this class.
In the novel algorithm proposed here, each state is randomly generated within the selected
class using the Acceptance-Rejection method. It is shown that the generated synthetic data of
the proposed algorithm better reproduce the distribution of observed data than the traditional
algorithm, for different numbers of states and for transition matrices from first to fifth order.
To improve the reproduction of the data over time, the proposed algorithm is used to simulate
only the random part series of wind speed, i.e. the observed series with extraction of trend and
seasonality. With this, the synthetic data is closer to the original series, as it can be verified
in different measures of error and in the behavior of the autocorrelation. Finally, the proposed
algorithm is used to generate synthetic data from the Standardized Precipitation Index (SPI) in
which it was able to reproduce the statistical characteristics of the sample density even with a
relatively small sample. The new algorithm is described in general and can be adapted to other
variations of Markov chains, as well as to obtain synthetic series of other natural phenomena.

Keywords: Markov Chain. Acceptance-Rejection. Synthetic Data. Wind Speed. Precipitation.



Resumo
Esta tese tem o objetivo de apresentar um novo algoritmo para gerar dados sintéticos de veloci-
dade do vento usando Cadeias de Markov e o Método da Aceitação-Rejeição. Tradicionalmente
para simular dados de velocidade de vento, usando Cadeias de Markov Finitas, cada estado é
representado por uma classe de valores e, após a seleção da classe obtida na matriz de transição,
é gerado um número aleatório uniforme considerando os limites desta classe. No algoritmo
proposto, cada elemento dos estados é gerado usando o método da Aceitação-Rejeição. Os
dados sintéticos gerados do algoritmo proposto conseguem reproduzir melhor a distribuição
dos dados observados do que o algoritmo tradicional em diferentes números de estados e para
matrizes de transição de primeira até a quinta ordem. Para melhorar a reprodução dos dados ao
longo do tempo, o algoritmo proposto é usado para simular somente a parte aleatória da série
de velocidade do vento, ou seja, a série observada com extração da tendência e sazonalidade.
Com isso, os dados sintéticos se aproximam mais da série original, conforme pôde ser verificado
em diferentes medidas de erro e no comportamento da autocorrelação. Ao final, o algoritmo
proposto é usado para gerar dados sintéticos do Indice de Precipitação Padronizado (SPI), no
qual consegue reproduzir bem as características estatísticas da densidade amostral mesmo usando
uma amostra relativamente pequena. O novo algoritmo é descrito de maneira geral e pode ser
adaptado para outras variações de Cadeias de Markov e na obtenção de séries sintéticas de outras
variáveis ambientais.

Palavras-chave: Cadeias de Markov. Aceitação-Rejeição. Dados Sintéticos. Velocidade do
Vento. Precipitação.
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1 Introduction

Global cumulative wind power capacity has been growing exponentially over the last
decades (SAWYER; DYRHOLM, 2018), due to technological advances that have led to market
competitiveness, as well as concerns over global warming partly caused by fossil fuel energy
generation. This growth has been accompanied by a growing interest in wind power production
modeling and simulation studies, including wind resource quantification, wind speed modeling
and prediction, wind power production, and system reliability assessment (YU; TUZUNER,
2008).

In order to plan the effective use of wind energy at a given location, it is necessary to
have a solid understanding of the characteristics of the region’s wind distribution. Information
on wind speed, generally collected through meteorological stations, can give an initial estimate
of the potential for using this type of renewable energy.

Many methods have been developed for wind speed forecasting, that may be divided
into two main categories: i) physical models that take into account physical characteristics of
the region, and ii) statistical models that explore relationships within measured data (LEI et al.,
2009). The physical models usually have advantage in long-term forecasting, while the statistical
methods do well in short-term prediction (LEI et al., 2009).

Several techniques based on a stochastic approach are used to model wind speed, among
which the most widely used methodologies include the autoregressive moving average models
(ARMA), Markov chains and wavelet analysis (AKSOY et al., 2004). A variety of density func-
tions to describe wind speed are often cited in the literature (CARTA; RAMIREZ; VELAZQUEZ,
2009). In addition, these techniques are compared among themselves and with other new method-
ologies (KAMINSKY et al., 1991; SFETSOS, 2000; CARAPELLUCCI; GIORDANO, 2013;
SOMAN et al., 2010; TASCIKARAOGLU; UZUNOGLU, 2014; TANG; BROUSTE; TSUI,
2015).

In the applications involving finite Markov chains, wind speed is categorized into intervals
(classes) that correspond to states of a finite chain, and, with this, synthetic series are obtained
that incorporate information of a current state in order to estimate future states. One of the
pioneering publications describing a simulation algorithm of synthetic wind speed series, based
on the cumulative transition matrix observed and estimated by maximum likelihood, was written
by Sahin e Sen (2001). The authors used a first order Markov chain with eight states to model
the wind speed. The states are defined by means of deviations around the sample mean. The
quality of the fit was assessed by comparing the distance between the mean and the standard
deviation of the observed data and the actual data.
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Shamshad et al. (2005) used first and second order matrices taking 1m/s as amplitude
of wind speed for the definition of twelve states. The authors use mean, percentiles, standard
deviation, and other measures, in addition to the autocorrelation function and spectral density, to
compare the original data with the synthetic data. They also compare parametric estimates by
fitting a Weibull model to actual data and simulated data. They conclude that the second-order
transition matrices are better than the first-order matrices and suggest studies with higher order
chains.

The effect of state resolution on the fit quality for synthetic series generation is addressed
in the study of Hocaoglu, Gerek e Kurban (2008). For this, the authors compare two models with
state amplitude of 1m/s and 0.5m/s, in which they generated 13 and 26 states respectively for
the construction of a first order matrix. Descriptive measures and frequency of observed and
estimated values for each state were compared, concluding that there is an improvement in the
estimates with 26 states, and that it is necessary to verify this effect in higher order chains.

Petre, Rebenciuc e Ciucu (2016) used first-order Markov chains considering the states
spaced equally at 1m/s within the turbine operational range. The authors indicate that the method
has good predictive result for wind power in the short term and can be used to fill small gaps in
the time series.

Seasonality effect has been discussed by authors who work with synthetic data generation
of wind speed via Markov chains. For example, Wu et al. (2012) used wind energy data obtained
every minute for 9 months to examine the effect of different numbers of states and seasonality.
State spaces of size 10, 15, 20 and 100 were observed, in which synthetic data were generated in
two ways: i) from a general transition matrix, and ii) using nine different transition matrices, one
for each month (all were matrices of first order). For comparison, they used descriptive measures,
autocorrelation function and probability density function. They concluded that by selecting an
ideal number of states it is possible to generate wind energy series of better quality, especially
when seasonality is taken into account (using 9 chains).

Similarly Karatepe e Corscadden (2013) used 9 first and second order chains with
data from two stations from different climatic regions collected every 10, 20 and 50 minutes.
Transition matrices of one month of each of the four seasons of the year were estimated.
Descriptive measures, probability density function and a goodness of fit test were compared.
The authors concluded that one month data is sufficient for reproducing general wind speed
characteristics associated with seasonality.

Another important discussion is the limitation of autocorrelation reproduction by the
Markov chain. Nfaoui, Essiarab e Sayigh (2004) used a 12 state first-order Markov chain and
conclude that the comparison between the observed wind speed and the synthetic indicates a
good reproduction of wind speed characteristics, but the synthetic data can not reproduce the
auto-correlation of the original data. A more successful reproduction of autocorrelation was
reported by Pesch et al. (2015), using a second-order transition matrix.
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Besides the above mentioned developments, there have been many other publications
that used finite Markov chain to generate synthetic wind speed data using the original algorithm
proposed by Sahin e Sen (2001). The initial motivation of this study and its primary objective is
to propose an enhancement of this algorithm, to achieve a more accurate description of wind
speed data in terms of its probability density function (PDF), and consequently of the capacity
to reproduce the series. The idea is to generate the synthetic data for each state in accordance
with the empirical distribution, using the acceptance-rejection method (a succinct description of
accept-reject sampling can be found in Casella, Robert e Wells (2004)).

The data of wind speed are from the municipality of Petrolina (9◦24"S, 40◦29"W, 370 m)
that is located in the Brazilian northeast. The municipality has its economy based on agriculture
with irrigated fruit cultivation representing great economic and social importance for the region
(MELO; ARAGÃO; CORREIA, 2013). Figure 1 shows the map of Brazil emphasizing the state
of Pernambuco in blue, and the municipality of Petrolina, in green. The first object of this study
is wind speed collected in 10 minute intervals in the period from January 1 to December 31,
2010, at the height of 50 meters, with 52470 observations measured in meters per second (m/s).
The observed data can be obtained from the website of the Brazilian National Institute of Space
Research (INPE) available at http://sonda.ccst.inpe.br/.

Figure 1 – Map of Brazil with the state of Pernambuco (with outline in blue) and your munici-
pality Petrolina (in green)
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Another justification for using data from this municipality is its potential for wind power
generation. Carneiro e Carvalho (2015) studied the wind patterns of three Brazilian cities:
Maracanaú, Parnaíba, which are part of the coast of the state of Ceará and Piauí respectively,
and Petrolina that is part of the interior of Pernambuco. They concluded that the municipality of
Petrolina, even though it is not a coastal city, is one of the cities that presents the best potential
for wind power due to its high regularity and low variability in wind behavior. This information
on the wind potential associated with knowledge about the wind speed distribution of Petrolina
is important for future wind energy investment in the region.

The second objective of this work is to use the proposed algorithm to generate synthetic
data of the Standardized Precipitation Index (SPI) to monitor the drought in the semi-arid
northeast. To generate these synthetic data, monthly precipitation series were used from, January
1950 to December 2012 from the neighboring municipalities of Petrolina and Afrânio (8◦30"S,
40◦00"W, 522 m).

The SPI proposed by McKee et al. (1993), is the most common index used to monitor
droughts, which is easy to co-recharge and can be used at different scales times (GUTTMAN,
1999). As opposed to wind speed, no studies have been identified in the literature with the
objective of generating synthetic SPI data using Markov chains. It is worth mentioning that it
is common to find high resolution datasets of wind speed series, such as databases containing
information per minute, every 10 minutes, etc. However, precipitation data are generally available
monthly and this implies that the data sets are small and there is a greater difficulty in estimating
the statistical parameters using traditional methods.

In the following chapters, the methodology will be explored in some detail. In Chapters
2 to 4 the proposed algorithm is applied to wind speed. In chapter 2, first-order chains are
considered with variations in the number of states and the results will be compared to the
traditional method. In chapter 3, higher-order Markov chains will be used for synthetic data
generation. The Chapter 4 presents a methodology that suggests the extraction of the trend and
seasonality of the wind speed series to obtain a closer approximation of the synthetic series of
the observed series. The Chapter 5, the proposed algorithm is used to generate synthetic SPI data.
Finally, in chapter 6, a general conclusion is presented to summarize the results obtained and
perspectives for future work are discussed. All simulations, tests and graphical visualizations
were performed in software R (R Core Team, 2018) (commands in Appendix B).
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2 Markov Chain with Acceptance-Rejection:
Variations in the Number of States

In this chapter the new algorithm to generate wind speed synthetic data is presented
and compared to the traditional approach. The first-order Chains are considered with variations
in the number of states. Initially it was verified whether the successive events of the transition
matrices are independent or dependent on each other. The quality of reproduction of the original
distribution is verified by comparing the descriptive measures (mean, median, 1st quartile, 3rd

quartile and standard deviation) and using determination coefficient (R2), Chi-square (χ2) and
root mean square error (RMSE) applied to the relative frequencies. The Kolmogorov-Smirnov
test is used to verify if the distribution of synthetic data is equal to that of the observed data. The
impact of autocorrelation will be verified in both algorithms. Finally agreement measures are
used to test the quality of simulations.

2.1 Methodology for generating synthetic data using Markov Chain
In what follows, we first describe the standard Markov chain approach. Next, we address

the acceptance-rejection method for generating samples drawn from an arbitrary function on
a closed interval, applied in the current proposal for enhancing the Markov chain algorithm.
Finally, we describe the commonly used algorithm proposed by Sahin e Sen (2001), together
with the current enhanced Markov algorithm proposal to generate wind speed synthetic data.

2.1.1 Markov Chain

The first-order Markov chain is a stochastic process where the next state depends only on
the current state, that is, past states do not influence the future (HOEL; PORT; STONE, 1986).
This (Markovian) property can be formulated as

P(Xn+1 = j|X0 = i0, . . . ,Xn = i,) = P(Xn+1 = j|Xn = i), (1)

where X1,X2, . . . ,Xn,Xn+1 are the values of the random variable X observed at instances 1,2, . . . ,n,n+
1. If the transition probabilities of the Markov chain are time independent the chain is said to
be homogeneous. Also, when the number of states is finite, then the chain is called the finite
first-order Markov chain. To simplify the notation, we shall henceforth write

pi j ≡ P(Xn+1 = j|Xn = i)

for the probability of transition from state i to state j. The maximum likelihood estimator of pi j

is given by
p̂i j =

mi j

∑
n
j=1 mi j

, (2)
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where mi j represents the observed number of transitions from state i to state j.

For n states the transition probabilities can be written as a square matrix (the so called transition
matrix) P of the form:

P =


p11 p12 . . . p1n

p21 p22 . . . p2n
...

... . . . ...
pn1 pn2 . . . pnn

 ,

with the restrictions

1. pi j ≥ 0;

2. ∑
n
j=1 pi j = 1, ∀i.

The original algorithm proposed by Sahin e Sen (2001) for simulating wind speed data
rests on the above first order Markov chain approach, while more elaborate methods may take
into account dependence of the transition on k > 1 previous values (k− th order Markov chain).

Some important definitions of Markov chains (will be more discussed in the following
chapters):

Definition 1. (Accessibility): In a Markov chain, state j is said to be accessible to state i if in

"m" steps P(m)
i j > 0 for some m ≥ 0. This means that starting from state i, it is possible (with

positive probability) to enter state j in finite number of transitions.

Definition 2. (Communicate): State i and state j are said to communicate if state i and state j

are accessible from each other (P(m)
i j > 0 and P(m)

ji > 0 for some m≥ 0).

Definition 3. (Class of states): Two or more states that communicate are said to be in the same

class.

Definition 4. (Irreducibly): A Markov chain is said to be irreducible, if all states belong to the

same class, i.e. they communicate with each other.

For the simulation of synthetic data it is important that the estimated transition matrix be
irreducible. Otherwise problems will occur, for example if there are more than one class, from a
certain moment the synthetic data will be continuously and exclusively generated in this class.

2.1.2 Acceptance-Rejection Method

In the original wind speed simulation Markov chain approach of Sahin e Sen (2001)
the next state j is selected on the basis of the current state i, with probability pi j, and then the
actual value X j is drawn uniformly from the bin corresponding to the state j. This amounts to
approximating the empirical distribution with the histogram on the scale defined by the chosen
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number of bins, which may be considered too coarse in the context of large samples commonly
available and used nowadays, in conjunction with the readily available elevated computational
capabilities.

In Figure 2a the histogram of the observed data of wind speed in the municipality of
Petrolina in 2010 is presented where each class is defined with amplitude of 1m/s, together with
the empirical Gaussian kernel density estimate (WAND; JONES, 1994).
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Figure 2 – (a) Histogram of observed wind speed of the municipality of Petrolina in 2010
distributed every 1m/s, and (b) simulating 500 numbers using the acceptance-rejection
method at a kernel density range 3m/s to 4m/s of the observed wind speed data, where
the red dots represent rejected and the blue dots accepted trials.

Assuming that the bin j corresponding to this particular interval was chosen as the next
state of the Markov chain process, the histogram approach would suggest a uniform value for X j

anywhere between 3 and 4, while it is clear from Figure 2 that values close to X j = 3 should be
chosen with a much lower probability (almost twice as low) than the values close to X j = 4.

The ARM (Acceptance-Rejection Method) is a simple alternative that takes into account
the empirical distribution for choosing X j, once that bin j has been selected as the Markov
chain "next" state. In what follows, the most elementary version of the acceptance-rejection
sampling (CASELLA; ROBERT; WELLS, 2004) is implemented for the sake of clarity (a
more sophisticated approach by choosing piecewise functional approximations could somewhat
enhance performance, sacrificing simplicity, but this appears to be only of academic, and not of
practical interest in the current context).
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Suppose one needs to generate numbers distributed according to the sample density f (x),
in a given interval [xk,xk+l]. The idea of the ARM is to sort out a pair of data (x0,y0), in which
the value x0 is obtained uniformly in [xk,xk+l] and at the same time a value y0 is drawn uniformly
between 0 and the maximum value of the density f (x) in this interval. If the drawn value y0 is
less than f (x0) then the value x0 is accepted as a sample of this density function, otherwise it
is discarded (rejected). The Figure 3 illustrates the steps for generating a sample in the interval
[xk,xk+l] via ARM. This process is repeated until a desired number of accepted values of x are
accumulated.

y0 < f (x0)?

Accept x0

Yes

Reject x0

No

{
x0 ∼U(xk,xk+l)

y0 ∼U(0,max[ f (xk), . . . , f (xk+l)])

The f(x) is estimated
using kernel density

Generate

Figure 3 – Flow chart illustrating the Acceptance-Rejection method

An application of this method can be seen in Figure 2b that presents the sample density
obtained from a Gaussian kernel of the observed wind speed data, where a rectangle with 500
uniformly distributed random points generated in the range of wind speed from 3 to 4, and
density from 0 to 0.20 (maximum of the Gaussian kernel density in this interval). From these
points 405 (in blue) were accepted since they are below the estimated density and 95 (in red)
were rejected since they are above the estimated density.

Note that the frequency of accepted values gradually increases from x = 3 to x = 4
representing well the characteristic density curvature on this interval. If the draw had only been
uniform in this interval as routinely done in the standard Markov chain approach, all the points
presented would have been accepted and consequently the frequency of elements close to x = 3
would be equal to the frequency of elements near x = 4, ignoring the curvature of the sample
density.
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2.1.3 Generating synthetic data with the standard and the enhanced algorithm

After classification of each of the observed values of wind speed into one of the classes
(states) Sahin e Sen (2001) propose the following first order finite Markov chain algorithm:

1. Find the cumulative probability transition matrix P, with values in each row summing to
unity (∑n

j=1 pi j = 1, ∀i).

2. Choose randomly the initial state i.

3. To generate the next state j from the current step i, a uniform random number u is drawn
between 0 and 1, and from the i-th row of the transition matrix j is chosen as the state
whose cumulative probability corresponds to u, such that ∑

j−1
k=1 pik < u≤ ∑

j
k=1 pik.

4. The estimated wind speed in each generated state is determined by another uniform random
number for intermediate states, while for the extreme states (the first and the last bin)
values are generated by considering a shifted exponential distribution. The smallest values
in such exponential distributions are the lowest boundaries of the extreme states.

The enhancement of this algorithm proposed in the current work, modifies only the last
step:

4. From the chosen bin j the estimated wind speed is determined by the acceptance-rejection
method from the sample kernel density estimate.

As described in Chapter 1, there is no general rule of how states should be chosen, for
example, most works suggest using equally spaced states every 1m/s or 0.5m/s, or composed
of deviations around the mean. For coherent comparison of the algorithms all simulations were
generated here with states equally spaced.

2.2 Results
Simulations were performed considering 8, 12, 16, 20, 24 and 28 states. For each number

of states it was checked if the successive events of the transition matrices are independent or
dependent on each other. For each combination of state size and algorithm, the mean, median,
1st quartile, 3rd quartile and standard deviation were compared. The quality of approximation
of the observed data by the synthetic series was verified using determination coefficient (R2),
Chi-square (χ2) an root mean square error (RMSE) applied to the relative frequencies (measures
commonly used to compare adequacy of probability distributions to observed data (AKPINAR;
AKPINAR, 2004; KANTAR; USTA, 2008; KANTAR; USTA, 2015)). Then, it was verified
whether the generated series and the observed series come from the same distribution using
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Kolmogorov-Smirnov test (WANG; TSANG; MARSAGLIA, 2003) and Anderson-Darling test
(SCHOLZ; STEPHENS, 1987). Finally, the synthetic series are compared with the observed
series using the error measures: Mean Absolute Error (MAE), Mean Square Error (MSE), Root
Mean Square Error (RMSE) and Symmetric Mean Absolute Percentage Error (sMAPE), where
the latter is a modified version of Mean Absolute Percentage Error (MAPE) suggested by
Makridakis (1993) to be used when there are values equal or very close to zero (TASHMAN,
2000; HYNDMAN; KOEHLER, 2006). The formulas of these measures are given by

MAE =
1
m

m

∑
i=1
|xi− x̂i| , (3)

MSE =
1
m

m

∑
i=1

(xi− x̂i)
2 , (4)

RMSE =

√
1
m

m

∑
i=1

(xi− x̂i)2 , (5)

sMAPE =
1
m

m

∑
i=1

|xi− x̂i|
(|xi|+ |x̂i|)/2

. (6)

The Markov chain properties can be tested statistically by checking whether the suc-
cessive events are independent or dependent on each other (SHAMSHAD et al., 2005). For
successive events to be independent, the statistic γ , mathematically defined by:

γ = 2
n

∑
i=1

n

∑
j=1

ln
pi j

p j
(7)

is distributed asymptotically as χ2 having (n−1)2 degrees of freedom (DF), where n is the total
number of states. The marginal probabilities p j for the jth column of the transition probability
matrix are given by

p j =
∑

n
i=1 ni j

∑
n
i=1 ∑

n
j=1 ni j

(8)

where ni j is the frequency of state i being followed by state j. The Table 1 presents the results of
this test for each number of states using α = 5% and in all cases it can be concluded that the
events are dependent on each other.

Table 1 – Results of test independence each size of states

Numbers of States
Values 8 12 16 20 24 28
DF of χ2 49 121 225 361 529 729
χ2
(α=5%) 66.34 147.67 260.99 406.3 583.61 792.92

γ 47147.77 85026.26 90681.42 94007.56 95787.58 96910.3

The Figure 4 shows the observed data kernel density estimate together with the density
of the data synthesized from the conventional algorithm (FIMCUNI - Finite Markov chain with
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Uniform distribution) and the proposed enhanced algorithm (FIMCAR- Finite Markov chain
with Acceptance-Rejection) for each choice of the number of states.

(e) n=24 (f) n=28

(c) n=16 (d) n=20

(a) n=8 (b) n=12

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12

OBSERVED

FIMCUNI

FIMCAR

OBSERVED

FIMCUNI

FIMCAR

OBSERVED

FIMCUNI

FIMCAR

wind speed

Figure 4 – Density of the wind speed data and density obtained from the synthetic data generated
by the algorithms in each number of states

It can be seen that the density obtained by FIMCAR approaches the observed data kernel
density for all state sizes, while in the standard FIMCUNI algorithm the approximation visually
indiscernible on the scale of the graph from the kernel density estimate occurs only with 20 or
more states.

The efficiency of the two algorithms in reproducing descriptive measures for different
number of states is presented in Table 2, together with the p-values of the Kolmogorov-Smirnov
test and Anderson-Darling test. While the mean, median, first and third quartile, and standard
deviation are rather similar to the empirical values in all cases, the proposed algorithm presents
a greater value of R2 and smaller values of χ2 and RMSE than the traditional algorithm, with
more pronounced difference for sizes smaller or equal to 16 states. In addition, the p-values for
the K-S and A-D statistic at 5% level demonstrate that for the FIMCUNI algorithm equivalence
is not rejected only for 20 or more states, while the FIMCAR algorithm passes the rejection test
for all state numbers.
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Table 2 – Descriptive measures obtained from the algorithms in each variation of state size

FIMCUNI

Statistics Observed
Number of States

8 12 16 20 24 28
Mean 4.888 4.895 4.883 4.898 4.884 4.890 4.875
Median 4.897 4.919 4.902 4.885 4.906 4.909 4.874
1st Quartile 3.756 3.649 3.730 3.761 3.757 3.765 3.734
3rd Quartile 5.993 6.024 5.991 6.040 5.993 5.991 5.982
Stand. Dev 1.740 1.825 1.756 1.782 1.746 1.744 1.757
R2 0.973 0.996 0.998 0.998 0.999 0.999
χ2 2x10−4 2.4x10−5 4.3x10−6 3.2x10−6 9.6x10−7 6.9x10−7

RMSE 0.014 0.005 0.002 0.002 0.001 8x10−4

A-D test p-value 3.1x10−13 5.4x10−7 0.001 0.412 0.447 0.172
K-S test p-value 1.1x10−10 7.2x10−7 5x10−4 0.416 0.200 0.134

FIMCAR
Statistics Observed 8 12 16 20 24 28
Mean 4.888 4.897 4.883 4.899 4.883 4.890 4.876
Median 4.897 4.905 4.909 4.899 4.902 4.909 4.876
1st Quartile 3.756 3.771 3.770 3.763 3.770 3.780 3.745
3rd Quartile 5.993 6.006 5.980 6.023 5.984 5.986 5.984
Stand. Dev 1.740 1.728 1.715 1.755 1.735 1.732 1.743
R2 0.999 0.999 0.999 0.999 0.999 0.999
χ2 3.7x10−7 1.2x10−6 7.9x10−7 6.6x10−7 7.3x10−7 4.2x10−7

RMSE 6x10−4 0.001 9x10−4 8x10−4 9x10−4 7x10−4

A-D test p-value 0.504 0.301 0.201 0.572 0.328 0.261
K-S test p-value 0.676 0.286 0.115 0.787 0.384 0.243

The two algorithms present the same relative frequency within the classes, because
the proposed algorithm only changes the way of generating the data in the class itself. To use
measures R2, χ2 and RMSE the number of classes was doubled by dividing them in half, and
relative frequencies of these sub-classes were compared. Table 3 presents observed and estimated
relative frequencies and measures for eight state simulation results, divided into sixteen sub-
classes. While FIMCUNI by construction exhibits equal relative frequency in sub-class pairs
(corresponding to the original classes), the proposed FIMCAR approach follows closely the
observed data sub-class frequencies.

The Figure 5 shows the autocorrelation for both algorithms. Note that there is no differ-
ence between the autocorrelation values using the FUNCUNI and FUMCAR algorithm, which
indicates that the algorithms do not influence autocorrelation. There is a small improvement
when the number of states is increased, but it still does not reflect well the autocorrelation the
observed data. It is worth noting that the autocorrelation decays faster due to the loss of memory
inherent to the first-order Markov chain methodology.
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Table 3 – Relative frequency and measures for eight states

States Observed FIMCUNI FIMCAR

1
0.00699 0.01407 0.00734
0.02049 0.01372 0.02045

2
0.04082 0.05451 0.04033
0.06751 0.05377 0.06794

3
0.10839 0.13210 0.10856
0.15388 0.12992 0.15346

4
0.18085 0.17454 0.18125
0.16451 0.17218 0.16547

5
0.11466 0.09076 0.11412
0.06926 0.09413 0.07077

6
0.03998 0.02914 0.03926
0.02013 0.02966 0.01954

7
0.00820 0.00534 0.00741
0.00313 0.00494 0.00286

8
0.00099 0.00065 0.00097
0.00023 0.00059 0.00027

R2 0.9734 0.999
χ2 2x10−4 3.7x10−7

RSME 0.014 6x10−4
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Figure 5 – Autocorrelation observed and estimated for each algorithm and size of states

Each error measurements (see appendix A) was normalized subtracting each value from
the mean and dividing by the standard deviation. Figure 6 which shows the parallel coordinate of
the synthetic data from each algorithm and each number of states. Note that for all state numbers
error measurements indicate that the data simulated by the proposed algorithm present smaller
distance from the real data (lower values on the graph), especially for less than 20 states.
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Figure 6 – Graph of parallel coordinates of the error measurements applied in the synthetic data
obtained from the algorithms for each size of states (lower is better for all measures)

2.3 Conclusions and Discussions
According to the simulation results, the synthetic data generated by the new algorithm

are closer to the observed wind speed data of municipality of Petrolina than the conventional
algorithm, both from the point of view of the reproduction capacity of the series, and its density.
This improvement is more pronounced when the number of states is below 20, which is quite
common in various cited studies.

The main advantage of the new algorithm is to make the choice of the number of states
more flexible (since it produces good results regardless of the number of states), permitting the
use of smaller samples for adequate characterization of the distribution, independent of their
form.

An alternative possibility to this method would be to find a suitable probability distribu-
tion to the wind speed data and then generate truncated data considering this adjusted distribution.
Several authors have discussed different distributions of probability to apply to wind speed data
(CARTA; RAMIREZ; VELAZQUEZ, 2009; WANG; HU; MA, 2016; KANTAR et al., 2016;
MASSERAN et al., 2013; SOHONI; GUPTA; NEMA, 2016). However the proposed method
has a clear advantage because its own sample density is used and it is not necessary to find an
ideal distribution to fit the data.

The algorithm proposed in this paper has been applied to finite first-order Markov chains,
but can still be adapted to other Markov chain variations such as, for example, higher-order
Markov chains and/or non-homogeneous Markov chains.
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3 Markov Chain with Acceptance-Rejection:
Exploring Higher Order Markov Chains

In this chapter, the algorithm proposed to generate synthetic wind speed data will be
applied in higher order Markov chains. The problems of using higher-order Markov chains
when increasing the number of states and how the use of this algorithm may make its use more
flexible will be discussed. Markov chains will be simulated from first to fifth order with different
sample sizes using the algorithms FIMCUNI and FIMCAR. The Kolmogorov-Smirnov test is
used to verify if the distribution of synthetic data is equal to that of the observed data. Finally,
autocorrelation and error measures are used to test the quality of the simulations.

3.1 Introduction
Markov chain has been commonly applied to wind speed and wind power using only

first order chains and presents a satisfactory result in the reproduction of the characteristics of
the wind speed distribution, being able to be used in the short term forecast (SAHIN; SEN,
2001; PETRE; REBENCIUC; CIUCU, 2016; SHAMSHAD et al., 2005). Selecting the correct
number of states (usually greater than or equal to 12) generates better wind speed synthetic data
(HOCAOGLU; GEREK; KURBAN, 2008; WU et al., 2012). Some studies compare first-order
Markov chains to other new techniques aiming to improve especially the autocorrelation function
(CARAPELLUCCI; GIORDANO, 2013; AKSOY et al., 2004; PESCH et al., 2015; XIE et al.,
2017). Other authors apply first and second order Markov chains at the same time and conclude
that there is an improvement of the accuracy by using the second-order model (KAMINSKY
et al., 1991; KARATEPE; CORSCADDEN, 2013; SHAMSHAD et al., 2005). Markov chains
from first to third order are explored only in wind power with similar conclusions regarding the
difficulty in reproducing the autocorrelation function (PAPAEFTHYMIOU; KLOCKL, 2008;
BROKISH; KIRTLEY, 2009).

Initially, the computational problems arising from simulations using higher order Markov
chains will be discussed. Then, different situations involving Markov chains with different
number of states and order are simulated using the FIMCUNI and FIMCAR algorithms.

3.2 Problems and solutions when using higher order Markov chains
Many authors indicate the use of higher-order chains, but there are no discussions in the

literature regarding the difficulties presented in computational simulations in this type of study.
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From a practical illustration, two problems will be discussed: the problem of using many states
and the problem of the last sequence of states.

3.2.1 Increasing the number of states

Generalizing the Equation 1, in Markov chain of order k ≥ 1 the probability of a state in
time t +1 depends of k previous states, which can be described as:

P(Xt+1 = xt+1|X0 = x0, . . . ,Xt−1 = xt−1,Xt = xt) =

P(Xt+1 = xt+1|Xt−k+1 = xt−k+1, . . . ,Xt−1 = xt−1,Xt = xt) (9)

When k = 1, this usual fist order Markov chain. For k = 2 returns a second order Markov chain,
mathematically rewritten as:

P(Xt+1 = xt+1|X0 = x0, . . . ,Xt−1 = xt−1,Xt = xt) = P(Xt+1 = xt+1|Xt−1 = xt−1,Xt = xt) (10)

If there are n states with a matrix of order k, then for computational purposes, the
transition matrix can be written with nkn elements, with nk rows and n columns, where the sum
of rows must add 1. For an example, consider n = 3 and a string of order 2, then the transition
matrix P will have this characteristic:

1 2 3



11 p111 p112 p113

12 p121 p122 p123

13 p131 p132 p133

21 p211 p212 p213

22 p221 p222 p223

23 p231 p232 p233

31 p311 p312 p313

32 p321 p322 p323

33 p331 p332 p333

If, for example, 10 states are used considering a second-order Markov chain, then the
transition matrix will have 100 rows and 10 columns, making a total of 1000 elements to be
filled. If one wants to keep the 10 states and use a third-order matrix, there will now be 10,000
elements to fill. A large data set is required to correctly estimate all transitions. In practice, the
authors suggest 12 or more states and suggest doing higher-order chains, which is only possible
if there is large sample to estimate probabilities of transitions. This difficulty also induces a high
computational cost and requires an advanced programming level.
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3.2.2 The problem of last observed sequence of states

Regardless of the order or number of states to generate synthetic data using Markov
chains, it is necessary that the transition matrix be irreducible, e.g. all states must communicate.
Otherwise, the process will stop each time it arrives in a state that does not communicate with
any other. This makes the simulation tiring and biased because at each stop it will be necessary
to restart the simulation from a new state without considering what has already been simulated.
In practice, this will only be a problem when the last sequence is unprecedented in the data set.
Which tends to occur when dealing with higher order transition matrices and many states.

To illustrate this problem, consider the following sequence for four states:

12323243231124433112123344332211112121223211212233211223123321341

where the transition matrix of the first-order this sequence of states is given by:

1 2 3 4


1 0.37 0.58 0.05 0.00

2 0.36 0.19 0.36 0.09

3 0.18 0.41 0.29 0.12

4 0.17 0.00 0.50 0.33

As the matrix of this example is irreducible there will be no problems in generating synthetic
data for wind speed. Consider now the second-order transition matrix of this same example
below:

1 2 3 4



11 0.29 0.71 0.00 0.00

12 0.36 0.27 0.27 0.09

13 0.00 0.00 0.00 1.00

14 0.00 0.00 0.00 0.00

21 0.38 0.50 0.12 0.00

22 0.25 0.00 0.75 0.00

23 0.25 0.38 0.37 0.00

24 0.00 0.00 0.50 0.50

31 0.67 0.31 0.00 0.00

32 0.43 0.14 0.29 0.14

33 0.20 0.60 0.00 0.20

34 0.50 0.00 0.00 0.50

41 0.00 0.00 0.00 0.00

42 0.00 0.00 0.00 0.00

43 0.00 0.33 0.67 0.00

44 0.00 0.00 1.00 0.00
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This transition matrix is not irreducible since there is a non-zero probability of arriving
at state 41 (in red) with a 50% chance after the sequence 34 (in blue), but since there is no
probability to go to another state and not even remain in it, this leads to a problem in the
simulation of synthetic data. With a larger sample it is possible this problem does not occur, but
one may have problems with a chain higher order. If one more state was observed and it was, for
example, equal to 2 (two) this problem would have been solved. Now the last sequence would
be 12 and would not be unpublished. Consequently, the sequence 41 would have a nonzero
probability to go to sequence 12, so there would be no problem in using a second-order Markov
chain. However, if there is interest in third-order matrices, the last sequence will be unpublished
and the problem of irreducibly would occur again.

The two problems were cited separately, but they tend to be correlated. The greater the
number of states and the order of the chain, the greater the chance of the last sequence observed
to be unpublished as seen in the illustration above.

3.2.3 A possible solution using the FIMCAR algorithm

Several studies which cite the traditional algorithm of Sahin e Sen (2001) indicate that the
higher the number of states the better the generation of synthetic data (HOCAOGLU; GEREK;
KURBAN, 2008; WU et al., 2012). This creates a drawback for the use of larger order transition
matrices since the increase of states and the use of chains of higher order generate several
problems already mentioned. A possible solution would be the use of the proposed algorithm
FIMCAR, because it can reproduce well the characteristics of the wind speed distribution with a
small number of states. This makes it more convenient for generating wind speed synthetic data
using higher order Markov chains, especially if one has a relatively large data set.

The wind speed data set used here is once again the data from Petrolina in 2010. Synthetic
wind speed data will be generated using first-order to fifth-order Markov chains considering 4,
6, 8 and 10 states from the FIMCUNI algorithms and FIMCAR. Although it has been verified
that FIMCUNI cannot represent well the distribution characteristics with few states, this result is
specific for first order Markov chains. In addition, the limitations themselves discussed in the
previous section show that it is not possible to have a large number of states when one wants to
use higher order chains. The distribution equality between the synthetic data and the observed
data will be compared using the Kolmogorov-Smirnov test and the proximity of the synthetic
series to that observed is calculated using the error measures MAE, MSE, RMSE and sMAPE,
already presented in the previous chapter.



Chapter 3. Markov Chain with Acceptance-Rejection: Exploring Higher Order Markov Chains 19

3.3 Results
The Figure 7 shows the histogram of each combination of number of states (columns)

and chain order (rows) of the synthetic wind speed data using the FIMCAR algorithm. Note
that regardless of the number of states and the string order the density of the synthetic data are
similar. The Table 4, shows the value associated with the Kolmogorov-Smirnov test, in which
it can be verified that in the FIMCAR algorithm independently of the number of states and the
order of the chain one can conclude, at the level of 5% of significance that it is not rejected
that the distribution of generated data is equal to the distribution of the observed data. On the
other hand, for the algorithm FIMCUNI all cases have equal distribution rejected with the same
significance. Since there were no good results again when using the FUMCUNI algorithm, the
next results will be discussed only for the FIMCAR algorithm.
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Figure 7 – Histograms with the distribution of the synthetic data of each combination of number
of states (in the columns) and chain order (in the lines) the synthetic wind speed data
using the FIMCAR algorithm
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Table 4 – P-value of test Kolmogorov-Smirnov comparing the distribution of the synthetic data
and the observed data

FIMCAR FIMCUNI
Number of States

Order 4 6 8 10 4 6 8 10
1st 0.157 0.100 0.943 0.146 0.000 0.000 0.000 0.000
2nd 0.677 0.205 0.513 0.277 0.000 0.000 0.000 0.000
3rd 0.227 0.207 0.290 0.533 0.000 0.000 0.000 0.000
4th 0.184 0.362 0.302 0.408 0.000 0.000 0.000 0.000
5th 0.313 0.630 0.187 0.433 0.000 0.000 0.000 0.000

Figure 8 shows the error measures (see appendix A) using the FIMCAR algorithm, in
which it can be seen that these measures are not influenced by the variation of the chain order and
the number of states addressed in this study. It can be observed, for example, that the first order
Markov chain presented smaller error measures when there were six and ten states, whereas for
four states it had worse performance and for eight it had a regular performance.

8 10

4 6

MAE MSE RMSE sMAPE MAE MSE RMSE sMAPE

−2

−1

0

1

2

−2

−1

0

1

2

 

ORDER 1st 2nd 3rd 4th 5th

Figure 8 – Graph of parallel coordinates of the error measures in the synthetic data from the
algorithm FIMCAR for each size of states and order of Markov chain

The Figure 9 presents the original series and the other synthetic series from the first to
the fifth order of the FIMCAR algorithm. Note that the original data appear to have a trend and
seasonality and that the first order chain exhibits a random behavior, but when the chain order is
increased the behavior of the synthetic series tends to be closer to the original series. Even with
the improvement, it can be noted that the trend and seasonality are not fully captured even in the
higher order chains. Extracting these components from the original series can be a solution to
improve synthetic data generation.
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Figure 9 – Observed series and synthetic series of Markov chains from first through fifth order
using the algorithm FIMCAR for eight states

Figure 10 shows that for the first lags the estimated autocorrelation is closer to that
observed with a greater number of states (n = 10) and using higher order chains of these studies
(4th and 5th order). For greater lags a slight improvement is observed when using higher order
chains. However all cases present a significant distance from the observed autocorrelation.
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Figure 10 – Autocorrelation observed and estimated for each order and size of states
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3.4 Conclusions and Discussions
The FIMCAR algorithm can preserve the characteristics of the observed wind speed

data distribution for the state and order numbers of the observed Markov chains, whereas the
traditional FIMCUNI algorithm cannot reproduce the original distribution in any of the situations
explored in this chapter. This extends the results obtained in the previous chapter and it can now
be concluded that the FIMCUNI algorithm cannot reproduce the behavior of the wind speed
series distribution using few states considering Markov chains from first to fifth order.

In the literature the question of generating synthetic data of wind speed using higher
order Markov chains was addressed only by authors Papaefthymiou e Klockl (2008), Brokish e
Kirtley (2009), who used chains up to the third order. The use of larger chain orders to generate
wind speed synthetic data has been restricted due to the technical and computational limitations
discussed throughout this text. The work described in this chapter is pioneering, as it is the first
time that 4th and 5th order Markov chains are used for this objective.

Visually, it is possible to suspect that the trend and seasonality of the original series is
best reproduced in higher order chains, but the observed error measures do not indicate this
improvement. Another interesting result is that the autocorrelation of the synthetic data has a
small improvement when the order and the number of states is increased, but all cases present a
distant autocorrelation of the observed one.

A possible solution to improve the generation of synthetic data in relation to the repro-
duction of the series over time and its autocorrelation is to simulate only the random part of the
original series. The next chapter will explore this point by re-evaluating the impact of higher
order chains using the FIMCAR algorithm.
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4 Markov Chain with Acceptance-Rejection:
Extracting Trend and Seasonality

This chapter will discuss the impact of trend and seasonality on synthetic wind speed
data generation. Then, a proposed methodology is described suggesting the extraction of these
components from the observed series using the FIMCAR algorithm. The resulting random
distribution is compared to the simulated series using chains from first-order up to the fifth order.
Finally, the trend and the seasonality are regrouped with the observed and simulated random part
for the appropriate comparisons. These results will be compared to the results of the previous
chapter to verify if there was improvement in the generation of wind speed synthetic data.

4.1 Introduction
Some authors argue that to better reproduce the wind speed series over time it is necessary

to extract the trend and the seasonality of the data (SHAMSHAD et al., 2005; ETTOUMI;
SAUVAGEOT; ADANE, 2003; MUSELLI et al., 2001). Of course a higher order chain tends
to have a lower loss than a low order chain because it contains more previous information to
generate a future state. However, as seen in the previous chapter, increasing the order of the
chain does not cause the error measures to decrease. This indicates that there is no significant
improvement in the approximation of the synthetic data to the actual data as the chain order
increases.

Wind speed series already presented in previous chapters will be used, however, the trend
and seasonality will be determined considering the fixed size of 8 (eight) states using transition
matrices from the first to the fifth order. The simulated data will correspond to the random values
of the series (without trend and seasonality). First, it will be verified if the simulated data has the
same distribution of the random observed using the Kolmogorov-Smirnov test. Then, the trend
and seasonality will be regrouped both in the random part of observed series and in the series
estimated to be compared with the error measures and autocorrelation. In the end, these results
will be compared to the results from the previous chapter for this number of states.

4.1.1 Extracting trend and seasonality of observed series

From the data of the observed series corresponding to only one year, it is not possible
to verify the seasonality of the series in the traditional way when one has annual information,
but the daily seasonality can be extracted (PESCH et al., 2015). The trend was estimated using
a moving-average using 144 observations corresponding to the information of one day of the
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wind speed series. From this series, without trend, the mean per hour and month will be obtained
to estimate the seasonality. These means are shown in Figure 11, in which it can be seen that
the wind speed structure has a drop between 1h and 9h (stronger in the winter months) and then
from 9h to 12h there there is rapid growth (with peak in the winter months) and, finally, between
13 and 24 hours there are two different behaviors: in the months referring to autumn and spring
there is a quadratic behavior and in the summer and winter months there is a decreasing behavior
(with different intensities). Although the behaviors are similar considering each month and its
season, the intensities are different. Therefore, the combination of hour and month will be used as
an estimate of the seasonality in this period. The random series to be simulated will be the series
of the original data taken from the series without trend less and the seasonal component (mean
per hour and month) which is presented in Figure 12 along with the observed series together
with the estimated trend in which from now on be named raw series.
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Figure 11 – Mean per month and hour of the wind speed series without trend (similar color scale
indicate same meteorological season)
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Figure 12 – (a) Raw series (Observed series) with the estimated trend and (b) random series
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4.2 Results
The Figure 13 shows the distribution the random part of the wind speed data and the

synthetic data generated from 8 (eight) states with Markov chains from first through fifth order.
Each part referring to the simulated data present the p-value of the Kolmogorov test, in which it
can be concluded that independently of the order of the Markov chain the FIMCAR algorithm
was able to reproduce the density of the random part of the data.
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Figure 13 – Density of random part of the wind speed data and the synthetic data generated from
8 (eight) states with Markov chains from first to fifth order

The estimated trend and seasonality of the original series were incorporated in the random
(returning the original series) and incorporated in the synthetic series to verify if they present
approximation in terms of descriptive measures and if they present similar behavior over time.
Descriptive measures of mean, median and standard deviation are presented in the Table 5, in
which it can be observed that the synthetic series with trend and seasonality have measures of
central trends very similar to the original series, but the estimated standard deviation is slightly
underestimated.

Table 5 – Descriptive measures of the synthetic series added to the trend and the seasonality of
the observed series

Order
Statistics Observed 1st 2nd 3rd 4th 5th

Mean 4.894 4.893 4.888 4.899 4.893 4.906
Median 4.902 4.897 4.877 4.889 4.883 4.896

1st Quartile 3.763 3.797 3.785 3.777 3.769 3.762
3rd Quartile 5.996 5.985 5.962 6.005 5.988 5.998
Stand. dev 1.737 1.636 1.642 1.661 1.675 1.680
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In order to verify if there was improvement in the reproduction of the synthetic series
using this methodology, we compared the error measures of the original series and the simulated
series plus trends and seasonality. Figure 14 shows these comparisons together with the results of
the previous chapter using 8 (eight) states, in which it can be seen that in all cases the observed
series is best reproduced when only its random part is used in red) than when using the raw data
(blue line above) and that in both cases the order of the chain does not seem to influence the
improvement of the reproduction of the original series (see appendix A).
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Figure 14 – Graph of parallel coordinates of the error measures in the synthetic data from the
algorithm FIMCAR for raw data and random data

In Figure 15 it is possible to verify that the observed series and the synthetic series (esti-
mate via the random series with fifth-order Markov chain with added the estimated seasonality
and seasonality) show a very similar behavior over time.
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Figure 15 – Observed series and synthetic series using a fifth-order Markov chain
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The figure 16 shows the autocorrelation for raw and random data, and it can be verified
that simulating only the random data improve the autocorrelation estimates for any order of the
chain. Observing the autocorrelation generated by simulating only random data there is a slight
improvement in approximation when using 4th and 5th order chains.
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Figure 16 – Autocorrelation observed and estimated for each algorithm and size of states

4.3 Conclusions and Discussions
The extraction of the trend and the seasonality allowed to obtain a random series over

time. The synthetic series generated from the FIMCAR algorithm were able to reproduce well
the characteristics of the random series. With the incorporation of trend and seasonality in the
observed and estimated series, it was verified that the central measurements are well reproduced
and that only the variability is slightly underestimated.

When comparing the error measures of this chapter with the previous one (for eight states
with raw data) it can be observed that there was an improvement in the generation of synthetic
data using only the random wind speed series and that the order of the chain did not seem to
have influence in both cases.

The simulated data only of the random part present an autocorrelation function much
closer to the real if compared to the data using only raw data. In both cases, the 4th and 5th order
chains show a subtle improvement in autocorrelation reproduction when compared to the other
chain orders.

All the simulations of this chapter were using the algorithm FIMCAR, because a size of
8 (eight) states was used that did not have good results for the algorithm FIMCUNI. We did not
verify the effect of this methodology for the FIMCUNI and FIMCAR algorithms using lower
order chains, which may be a future study.
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5 Markov Chain with Acceptance-Rejection:
Generating SPI Synthetic Data

In the previous chapters the proposed algorithm was applied to wind speed, but in this
chapter it will be applied to another natural phenomenon: precipitation. In this chapter, the
FIMCAR and FIMCUNI algorithm will be used to generate synthetic data from the Standardized
Precipitation Index (SPI). A series of 63 years of precipitation (756 observations) will be
used from the neighboring municipalities of Afrânio and Petrolina. For both municipalities
the adequacy of the distribution of the observed and synthetic SPI data will be verified using
descriptive measures minimum, 1st quartile, median, 3rd quartile, maximum, mean and standard
deviation and the Kolmogorov-Smirnov test.

5.1 Introduction
Good knowledge of influential meteorological phenomena, especially drought, is es-

sential for the management and planning of water resources in a region. Drought is a natural
phenomenon popularly known as the cause of various damages and affects a significant number
of people in the world.

To monitor the drought it is necessary to know the local and regional characteristics.
Analyzing the behavior of a hydrological time series is important to create a suitable mathematical
model that allows a consistent forecast. More than 100 local and regional drought indices have
been developed for this purpose (ZARGAR et al., 2011).

Developed by McKee et al. (1993) the Standardized Precipitation Index (SPI) is the
most commonly used, which is easy to co-recharge and can be used at different scales times
(GUTTMAN, 1999). In 2009, with the participation of 22 countries, the Interregional Workshop
on indices and early warning systems for drought was held. The consensus of the participants
was to recommended the use of SPI in all national meteorological services, and to provide this
information on their websites (HAYES et al., 2011).

Autoregressive stochastic models are applied to rainfall and drought events. The Markov
models along with SPI are often proposed to estimate the probabilities of drought. Sanusi et al.
(2015) used first-order Markov Chains to predict and monitor drought in Malaysia. The authors
used monthly SPI data to estimate the mean residence time, the mean recurrence time, and the
average time of the first passage of the drought classes.

Factors that may influence the forecasting capability of Markov chains were studied by
Banimahd e Khalili (2013) using SPI, RDI, EDI and SPEI in different climatic zones.
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Steinemann (2003) used six classes, relative to the PDSI and the SPI applied Markov
chain to characterize the probabilities for drought class transition and to identify the time of
duration the classes.

Teixeira-Gandra, Damé e Silva (2017) estimated the SPI using Markov chain to simulate
the occurrence of rain with the gamma distribution to predict monthly precipitation. They
concluded that the statistical characteristics of the dry and wet days series were maintained, but
extreme drought events were underestimated.

Estimate drought probabilities and drought predictions via non-homogeneous Markov
chain model were studied by Rahmat, Jayasuriya e Bhuiyan (2017) who concluded that model
can predict fairly well drought situations for a month ahead.

A comparison between Markov chain (MC) models and Network-Based (NB) models is
discussed by Avilés et al. (2016). The results indicate that MC based models predict better wet
and dry periods, while BN based models generate more accurate predictions of severe droughts.

Different from wind speed data, no workshave been identified with a proposal to generate
synthetic SPI data via Markov chains. This is probably due to a limited number of samples to
generate reliable data with traditional methods. In this chapter, the FIMCAR algorithm will be
used to generate monthly synthetic SPI data for the municipalities of Afrânio (8◦30"S, 40◦00"W,
522 m) and Petrolina (9◦24"S, 40◦29"W, 370 m) which are neighboring and located in the
Brazilian northeast as can be seen in Figure 17 below:

Figure 17 – Map of Brazil with state of Pernambuco and the cities of Petrolina and Afrânio
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According to the climate classification of Köppen-Geiger the municipality of Afrânio
is classified as BSk, i.e, semi-arid hot, while Petrolina is classified with BSh, i.e., semi-arid
cold (PEEL; FINLAYSON; MCMAHON, 2007). Although it has low rainfall considering
other climates, the Brazilian semiarid is one of the rainiest in the world presenting a mean
annual precipitation around 750mm (ZANELLA, 2014). The Figure 18 shows the total annual
precipitation series of Afrânio and Petrolina between 1950 to 2012.
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Figure 18 – Total annual precipitation in Afrânio and Petrolina between 1950 to 2012

5.2 Material and methods
The observed series that presents the monthly precipitation from January 1950 to De-

cember 2012 was available by Silva (2015) who obtained the data originally from the Institute of
Technology of Pernambuco (Itep) and filled in the missing information using the trend surface
analysis method, after testing different interpolation techniques.

In order to calculate the SPI, it is necessary to adjust a Probability Density Function
(PDF) in the rainfall totals of a region, in which several authors discuss the ideal distribution
(SVENSSON; HANNAFORD; PROSDOCIMI, 2017; BLAIN, 2011; STAGGE et al., 2015;
BLAIN; MESCHIATTI, 2015). In this work the gamma distribution was used, which is the most
used to fit precipitation time series that has PDF given by:

f (x) =
1

β αΓ(α)
xα−1e−x/β (11)

where α > 0 is a shape parameter and β > 0 is a scale parameter.

Γ(α) =
∫

∞

0
yα−1e−y (12)

were Γ is the gamma function.
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Thom (1966) obtained the following optimum solutions for the maximum likelihood
estimators of α e β :

α̂ =
1

4A

(
1+

√
1+

4A
3

)
, (13)

β̂ =
x̄
α

, (14)

A = lnx̄− ∑ lnx
n

. (15)

where n is the number of precipitations observations.

Letting t = x/β the cumulative probability the gamma distribution is given by:

F(x) =
∫ x

0
f (x)dx =

1
Γ(α)

∫ x

0
tα−1e−tdt (16)

The gamma function is undefined for x = 0 and naturally precipitation data contain zeros,
then cumulative probability becomes:

H(x) = q+(1−q)F(x) (17)

where q is the probability of a zero in date of precipitation. If m represents the number of zeros
in a precipitation series, Thom (1966) indicates that q can be estimated by m/n. Finally, the
SPI is generated by standardizing the values obtained in H(x) based on the following equations
proposed by Abramowitz e Stegun (1964):

SPI =−
(

t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
, for 0 < H(x)≤ 0.5

SPI =+
(

t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
, for 0.5 < H(x)≤ 1

(18)

where


t =
√

ln
(

1
H(x)2

)
, for 0 < H(x)≤ 0.5

t =
√

ln
(

1
(1−H(x))2

)
, for 0.5 < H(x)≤ 1

(19)

The values of c0,c1,c2,d1,d2 and d3 are, respectively, 2.515517, 0.802853, 0.010328,
1.432788, 0.189269, 0.001308. After determination of the monthly SPI for each of the stations
of the two municipalities, the frequencies of SPI were obtained for the classification according
to Agnew (2000) proposal, as presented in Table 6 bellow:
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Table 6 – Classes of SPI suggested by Agnew (2000)

Code SPI value
Drought and wet

classes

1 SPI≤−1.65 extreme drought
2 −1.65 <SPI≤−1.28 sereve drought
3 −1.28 <SPI≤−0.84 moderate drought
4 −0.84 <SPI≤ 0.84 normal
5 0.84 <SPI≤ 1.28 moderate wet
6 1.28 <SPI≤ 1.65 severe wet
7 1.65 <SPI extreme wet

The categories will be used to derive the boundaries of first order transition matrices
using the FIMCUNI and FIMCAR algorithms. For each municipality it is verified if the synthetic
data of SPI are similar to the observed values comparing their observed and synthetic frequencies.
Then, descriptive measures of minimum, 1st Quartile, median, 3rd Quartile, maximum, mean
and standard deviation of the series will be compared. At the end, the Kolmogorov-Smirnov test
will be used to verify if the observed and synthetic series have the same distribution.

5.3 Results
The Figure 19 shows the sample distribution of the SPI using a violin plot (with an

internal box plot). The violin plot is a type of graph proposed by Hintze e Nelson (1998) that
combines box plot with estimated density. One of the main advantages with regards to the
box plot is that it is possible to visualize more than one mode in the data set, such as the SPI
distribution of the Afrânio that is bimodal. In Petrolina the box plot in conjunction with the violin
plot improves the visualization of the SPI distribution indicating a slight positive skewness.
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Figure 19 – Violin plot with box plot of SPI of the Afrânio and Petrolina, in which the red dot
represents the sample mean of each municipality
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After generating the monthly SPI the first-order transition matrices estimated for Afrânio
(P̂A) and Petrolina (P̂P) were obtained by maximum likelihood, as shown below:

P̂A =



1 2 3 4 5 6 7

1 0.00 0.17 0.50 0.17 0.00 0.00 0.17
2 0.04 0.08 0.08 0.58 0.12 0.04 0.04
3 0.00 0.03 0.06 0.77 0.03 0.03 0.09
4 0.01 0.03 0.04 0.77 0.10 0.03 0.03
5 0.03 0.03 0.03 0.76 0.09 0.01 0.04
6 0.00 0.00 0.00 0.73 0.05 0.00 0.23
7 0.00 0.07 0.07 0.44 0.05 0.12 0.26


P̂P =



1 2 3 4 5 6 7

1 0.08 0.00 0.25 0.33 0.08 0.08 0.17
2 0.11 0.00 0.00 0.67 0.11 0.00 0.11
3 0.02 0.03 0.12 0.66 0.09 0.07 0.02
4 0.01 0.01 0.07 0.74 0.08 0.03 0.06
5 0.03 0.02 0.08 0.61 0.14 0.06 0.08
6 0.00 0.03 0.06 0.71 0.10 0.03 0.06
7 0.00 0.00 0.07 0.68 0.09 0.09 0.07



According to the P̂a and P̂p for Afrânio if the current month is classified as "extremely
drought" the chance of next month to be classified again as "extreme drought" is zero, but the
chance of being classified in another drought state is 67% (sereve drought and moderate drought),
while for Petrolina this chance is only 33%. In other states for both Afrânio and Petrolina the
chance of next month to be classified a “normal” state is high and varies between 44% to 77%
chance.

The Figure 20 shows the frequency of the observed series and the synthetic series
generated by the Markov chain for the municipalities of Afrânio and Petrolina. It is possible
to notice that, for both municipalities, the observed and generated frequencies are quite close.
This indicates that the use of Markov chains are able to reproduce the frequency of series with
significant quality.
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Figure 20 – Observed and synthetic frequency of SPI by category of the municipalities of Afrânio
and Petrolina between 1950 and 2012
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The observed and synthetic descriptive measures of SPI of the studied municipalities are
presented in Table 7. The results indicate that, in both municipalities, the data generated by the
FIMCAR algorithm are better approximated to the observed SPI data than those generated by
FIMCUNI.

Table 7 – Descriptive measures of observed and generated SPI via FIMCUNI and FIMCAR
algorithms for Afrânio and Petrolina

Afrânio Petrolina
Statistics OBSERVED FIMCUNI FINCAR OBSERVED FINCUNI FIMCAR
Minimum -1.6700 -1.6611 -1.6601 -2.1480 -2.1347 -2.1096
1st Quartile -0.1400 -0.4379 -0.1466 -0.4303 -0.5213 -0.3944
Median 0.3800 0.1104 0.3274 0.0195 0.0792 0.0504
3rd Quartile 0.6600 0.6947 0.7044 0.6606 0.6743 0.6560
Maximum 2.9600 2.9399 2.8423 2.9215 2.8787 2.8059
Mean 0.2988 0.1809 0.2958 0.1354 0.1382 0.1477
Stand. Dev 0.8064 0.8831 0.8190 0.8474 0.9386 0.8246

The observed density of SPI and the density generated by FIMCUNI and FIMCAR
algorithms are shown in Figure 21 for the municipalities studied. For both municipalities the
observed p-value of the K-S test, considering 5% of significance, indicates that the synthetic data
of SPI generated by FIMCAR algorithm are of the same distribution of the observed data, unlike
data generated via FIMCUNI that are rejected by the K-S test.

K − S  p − value = 0.1801

K − S  p − value = 2.3 × 10−9

K − S  p − value = 0.7388

K − S  p − value = 0.018

Afrânio Petrolina

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

OBSERVED

FINCUNI

FINCAR

SPI

Figure 21 – Density SPI observed and synthetic of the municipalities of Afrânio and Petrolina
using FIMCAR and FIMCUNI algorithms
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5.4 Conclusions and discussions
It has been observed that Afrânio has twice the chance of remaining in an "extreme

drought" situation than Petrolina. The municipality of Petrolina has a 33% chance of remaining
in some drought state, which requires special attention due to its economic importance. It is
worth noting that Petrolina has been outstanding in the economic area due to the growth in the
agricultural exports of the last decades (ARAÚJO; SILVA, 2013).

The results of the simulations indicate that The FIMCAR algorithm was superior to the
FIMCUNI algorithm in reproducing the characteristics of the SPI distribution for the two munic-
ipalities of this study. It is worth noting that the level of dryness and humidity were represented
by 7 (seven) categories, and that only 756 observations were used in each municipality. It is
worth mentioning that the observed density of Afrânio is bimodal, which makes it difficult to
generate synthetic data by other traditional methods, especially in a closed interval.
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6 General conclusions and discussions

According to the simulation results the synthetic data generated by the novel algorithm,
proposed in this work, are closer to the observed than the conventional algorithm, both from the
point of view of the reproduction capacity of the series, and its density. This improvement is
more pronounced when the number of states is small, which is quite common in various cited
studies.

This work is the first time that 4th and 5th order Markov chains are used to model wind
speed. The relation between number of states and the order of the chain was little explored due
to computational limitations discussed in Chapter 2. The increase in the number of states makes
it impracticable to use higher order chains in the traditional algorithm. However this problem is
minimized with the use of the FIMCAR algorithm because it can reproduce well the observed
series density, using a small number of states, independently of the order of the chain.

In Chapter 4 the use of chains using the FIMCAR algorithm was explored for the
observed series without trend and seasonality, using eight states. The random series were well
reproduced in terms of density, and by restoring the trend and the seasonality of the observed
series it was verified that the central measurements were well estimated. It was shown that
this methodology presents a significant decrease in error measures when comparing with those
obtained in Chapter 3 that used the raw data.

The simulated data only of the random part present an autocorrelation function much
closer to the real if compared to the data using only raw data in Chapter 3. In both cases, the 4th

and 5th order chains show a subtle improvement in autocorrelation reproduction when compared
to the other chain orders. The trend and seasonality extraction can still be studied and compared
with more states for the FIMCUNI and FIMCAR algorithms using lower order Markov chains.

The main advantage of the new algorithm is to make the choice of the number of states
more flexible (since it produces good results regardless of the number of states), permitting use
of smaller samples for adequate characterization of the distribution, independent of their form.

The algorithm proposed in this paper has been applied to finite first-order Markov chains,
but can still be adapted to other Markov chain variations. Although the object of study has
been wind speed, the proposed algorithm can be used to generate synthetic data of other natural
phenomena, especially those that in the literature are categorized in a few classes such as, in
chapter 5 in which it was used to generate synthetic SPI data. Application in other natural
phenomena can still be studied, such as solar radiation (TUSHAR et al., 2014).



37

Bibliography

ABRAMOWITZ, M.; STEGUN, I. Handbook of mathematical functions with Formulas, Graphs,
and Mathematical Tables (Applied Mathematics Series 55). National Bureau of Standards,
Washington, DC, 1964. 31

AGNEW, C. Using the SPI to identify drought. Drought Network News (1994-2001), 2000. xii,
31, 32

AKPINAR, E.; AKPINAR, S. Statistical analysis of wind energy potential on the basis of the
Weibull and Rayleigh distributions for Agin-Elazig, Turkey. Proceedings of the Institution of
Mechanical Engineers, Part A: Journal of Power and Energy, SAGE Publications Sage UK:
London, England, v. 218, n. 8, p. 557–565, 2004. 9

AKSOY, H.; TOPRAK, Z. F.; AYTEK, A.; ÜNAL, N. E. Stochastic generation of hourly mean
wind speed data. Renewable energy, Elsevier, v. 29, n. 14, p. 2111–2131, 2004. 1, 15

ARAÚJO, G. J. F.; SILVA, M. M. Crescimento econômico no semiárido brasileiro: o caso do
polo frutícola Petrolina/Juazeiro. Caminhos de Geografia, v. 14, n. 46, 2013. 35

AVILÉS, A.; CÉLLERI, R.; SOLERA, A.; PAREDES, J. Probabilistic forecasting of drought
events using markov chain-and bayesian network-based models: A case study of an andean
regulated river basin. Water, Multidisciplinary Digital Publishing Institute, v. 8, n. 2, p. 37, 2016.
29

BANIMAHD, S. A.; KHALILI, D. Factors influencing Markov chains predictability charac-
teristics, utilizing SPI, RDI, EDI and SPEI drought indices in different climatic zones. Water
resources management, Springer, v. 27, n. 11, p. 3911–3928, 2013. 28

BLAIN, G. C. Standardized precipitation index based on Pearson type iii distribution. Revista
Brasileira de Meteorologia, SciELO Brasil, v. 26, n. 2, p. 167–180, 2011. 30

BLAIN, G. C.; MESCHIATTI, M. C. Inadequacy of the gamma distribution to calculate the Stan-
dardized Precipitation Index. Revista Brasileira de Engenharia Agrícola e Ambiental, SciELO
Brasil, v. 19, n. 12, p. 1129–1135, 2015. 30

BROKISH, K.; KIRTLEY, J. Pitfalls of modeling wind power using Markov chains. In: IEEE.
Power Systems Conference and Exposition, 2009. PSCE’09. IEEE/PES. [S.l.], 2009. p. 1–6. 15,
22

CARAPELLUCCI, R.; GIORDANO, L. A new approach for synthetically generating wind
speeds: A comparison with the Markov chains method. Energy, Elsevier, v. 49, p. 298–305, 2013.
1, 15

CARNEIRO, T. C.; CARVALHO, P. C. M. de. Caracterização de potencial eólico: estudo de
caso para Maracanaú (CE), Petrolina (PE) e Parnaíba (PI). Revista Brasileira de Energia Solar,
v. 6, n. 1, 2015. 4

CARTA, J. A.; RAMIREZ, P.; VELAZQUEZ, S. A review of wind speed probability distributions
used in wind energy analysis: Case studies in the Canary Islands. Renewable and Sustainable
Energy Reviews, Elsevier, v. 13, n. 5, p. 933–955, 2009. 1, 14



Bibliography 38

CASELLA, G.; ROBERT, C. P.; WELLS, M. T. Generalized accept-reject sampling schemes.
Lecture Notes-Monograph Series, JSTOR, v. 45, p. 342–347, 2004. 3, 7

ETTOUMI, F. Y.; SAUVAGEOT, H.; ADANE, A.-E.-H. Statistical bivariate modelling of wind
using first-order Markov chain and Weibull distribution. Renewable energy, Elsevier, v. 28, n. 11,
p. 1787–1802, 2003. 23

GUTTMAN, N. B. Accepting the standardized precipitation index: a calculation algorithm.
JAWRA Journal of the American Water Resources Association, Wiley Online Library, v. 35, n. 2,
p. 311–322, 1999. 4, 28

HAYES, M.; SVOBODA, M.; WALL, N.; WIDHALM, M. The lincoln declaration on drought
indices: universal meteorological drought index recommended. Bulletin of the American Meteo-
rological Society, American Meteorological Society, v. 92, n. 4, p. 485–488, 2011. 28

HINTZE, J. L.; NELSON, R. D. Violin plots: a box plot-density trace synergism. The American
Statistician, Taylor & Francis, v. 52, n. 2, p. 181–184, 1998. 32

HOCAOGLU, F.; GEREK, O.; KURBAN, M. The effect of Markov chain state size for syn-
thetic wind speed generation. In: IEEE. Probabilistic Methods Applied to Power Systems, 2008.
PMAPS’08. Proceedings of the 10th International Conference on. [S.l.], 2008. p. 1–4. 2, 15, 18

HOEL, P. G.; PORT, S. C.; STONE, C. J. Introduction to stochastic processes. [S.l.]: Waveland
Press, 1986. 5

HYNDMAN, R. J.; KOEHLER, A. B. Another look at measures of forecast accuracy. Interna-
tional journal of forecasting, Elsevier, v. 22, n. 4, p. 679–688, 2006. 10

KAMINSKY, F.; KIRCHHOFF, R.; SYU, C.; MANWELL, J. A comparison of alternative
approaches for the synthetic generation of a wind speed time series. Journal of solar energy
engineering, American Society of Mechanical Engineers, v. 113, n. 4, p. 280–289, 1991. 1, 15
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APPENDIX A – Referring to the chapters

A.1 Error measures in ch. 2
Table 8 – Error measures of simulations using FINCUNI and FINCAR in Figure 6

FIMCUNI FIMCAR
Error measures

No States MAE MSE RMSE sMAPE MAE MSE RMSE sMAPE
8 2.006 6.347 2.519 0.111 1.946 5.989 2.447 0.107

12 1.965 6.084 2.467 0.108 1.942 5.946 2.438 0.107
16 1.975 6.197 2.489 0.108 1.960 6.105 2.471 0.107
20 1.994 6.268 2.504 0.110 1.985 6.214 2.493 0.109
24 1.955 5.985 2.446 0.108 1.948 5.943 2.438 0.107
28 1.956 6.050 2.460 0.108 1.951 6.015 2.453 0.107

A.2 Error Measures in ch. 3
Table 9 – Error measures of simulations using FIMCAR algorithm in Figure 8

Numbers of States
4 6

Order MAE MSE RMSE sMAPE MAE MSE RMSE sMAPE
1st 1.983 6.182 2.486 0.109 1.938 5.909 2.431 0.106
2nd 1.951 5.997 2.449 0.107 1.942 5.949 2.439 0.107
3rd 1.959 6.100 2.470 0.108 1.975 6.201 2.490 0.108
4th 1.970 6.119 2.474 0.108 1.973 6.112 2.472 0.108
5th 1.975 6.113 2.472 0.109 1.947 5.948 2.439 0.107

8 10
1st 1.956 6.036 2.457 0.107 1.943 5.975 2.444 0.107
2nd 1.949 6.001 2.450 0.107 1.958 6.002 2.450 0.107
3rd 1.972 6.085 2.467 0.109 1.956 6.090 2.468 0.107
4th 1.970 6.128 2.475 0.108 1.965 6.151 2.480 0.107
5th 1.946 6.065 2.463 0.107 1.958 6.088 2.467 0.108
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A.3 Histogram for algorithm FIMCUNI in ch.3
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Figure 22 – Histograms with the distribution of the synthetic data of each combination of number
of states (in the columns) and chain order (in the lines) the synthetic wind speed
data using the FIMCUNI algorithm

A.4 Error Measures in ch.4
Table 10 – Error measures of simulations using FIMCAR algorithm in Figure 14

Error measures
Raw Random

Order MAE MSE RMSE sMAPE MAE MSE RMSE sMAPE
1st 1.956 6.036 2.457 0.107 1.336 2.888 1.699 0.078
2nd 1.949 6.001 2.450 0.107 1.326 2.843 1.686 0.076
3rd 1.972 6.085 2.467 0.109 1.329 2.888 1.699 0.081
4th 1.970 6.128 2.475 0.108 1.332 2.911 1.706 0.076
5th 1.946 6.065 2.463 0.107 1.354 3.020 1.738 0.077
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APPENDIX B – Commands in R

# Function that generates states
estados=function(dados,seqest){

est=NULL
k=seq(1,(length(seqest)-1),1)
for(i in 1:length(dados)){

est[i]=max(1,k[seqest<=dados[i]],1)
}

return(est)
}

sequencia=function(x) seq(min(dados),max(dados)+0.001,length=x) # generating sequences
# Generating states using the sequence function within the states function
estger=estados(dados,sequencia(n+1)) # "n" is number of states

# Function generating synthetic wind speed data via Finite MC FIMCAR and FIMCUNI
# Input (in this order): data, generated states, chain order (from 1st to 5th) and state boundaries.
# Output (in this order and in list form): Synthetic data generated by FIMCUNI, Synthetic data generated by FIMCAR,
# Generated States, Probability Transition Matrix and Count Transition Matrix.

FIMC=function(dados,x,ord,ampli){
den=density(dados)
nc=length(ampli)-1
p <- array(0,dim=rep(nc,ord+1))

if(ord==1) for (tx in 1:(length(x) - ord)) p[x[tx+0],x[tx+1]]=
p[x[tx+0],x[tx+1]]+1
if(ord==2) for (tx in 1:(length(x) - ord)) p[x[tx+0],x[tx+1],x[tx+2]]=
p[x[tx+0],x[tx+1],x[tx+2]]+1
if(ord==3) for (tx in 1:(length(x) - ord)) p[x[tx+0],x[tx+1],x[tx+2],x[tx+3]]=
p[x[tx+0],x[tx+1],x[tx+2],x[tx+3]]+1
if(ord==4) for (tx in 1:(length(x) - ord)) p[x[tx+0],x[tx+1],x[tx+2],x[tx+3],x[tx+4]]=
p[x[tx+0],x[tx+1],x[tx+2],x[tx+3],x[tx+4]]+1
if(ord==5) for (tx in 1:(length(x) - ord)) p[x[tx+0],x[tx+1],x[tx+2],x[tx+3],x[tx+4],x[tx+5]]=
p[x[tx+0],x[tx+1],x[tx+2],x[tx+3],x[tx+4],x[tx+5]]+1

np=matrix(p,ncol=nc)
tl=rowSums(np)
mattra=np/tl
mattra[is.nan(mattra)] = 0

# renomando as linhas
if(ord==1) rownames(mattra)=paste(1:nc,sep="-")
if(ord==2) rownames(mattra)=paste(rep(1:nc,nc^1),rep(1:nc,1,each=nc),sep="-")
if(ord==3) rownames(mattra)=paste(rep(1:nc,nc^2),rep(1:nc,1,each=nc),rep(1:nc,1,each=nc^2),sep="-")
if(ord==4) rownames(mattra)=paste(rep(1:nc,nc^3),rep(1:nc,nc^2,each=nc),rep(1:nc,nc,each=nc^2),

rep(1:nc,1,each=nc^3),sep="-")# renomando as linhas
if(ord==5) rownames(mattra)=paste(rep(1:nc,nc^4),rep(1:nc,nc^3,each=nc),rep(1:nc,nc^2,each=nc^2),

rep(1:nc,nc,each=nc^3),rep(1:nc,1,each=nc^4),sep="-")# renomando as linhas
matac=t(apply(mattra, 1, cumsum)) # matriz acumulada

k=seq(1:nc)
E1=NULL;pvv=as.character(x[1:ord])
if(ord==1) E1[1]=paste(unlist(strsplit(pvv[1], "[-]")),sep="-")
if(ord==2) E1[1]=paste(unlist(strsplit(pvv[1], "[-]")),unlist(strsplit(pvv[2], "[-]")),sep="-")
if(ord==3) E1[1]=paste(unlist(strsplit(pvv[1], "[-]")),unlist(strsplit(pvv[2], "[-]")),



APPENDIX B. Commands in R 45

unlist(strsplit(pvv[3], "[-]")),sep="-")
if(ord==4) E1[1]=paste(unlist(strsplit(pvv[1], "[-]")),unlist(strsplit(pvv[2], "[-]")),

unlist(strsplit(pvv[3], "[-]")),unlist(strsplit(pvv[4], "[-]")),sep="-")
if(ord==5) E1[1]=paste(unlist(strsplit(pvv[1], "[-]")),unlist(strsplit(pvv[2], "[-]")),

unlist(strsplit(pvv[3], "[-]")),unlist(strsplit(pvv[4], "[-]")),unlist(strsplit(pvv[5], "[-]")),sep="-")

E2=NULL;E2[1]=min(k[matac[E1[1],]>runif(1)])
vel1=vel2=NULL;vel1[1]=vel2[1]=runif(1,ampli[E2[1]],ampli[E2[1]+1])
for(i in 1:(length(x)-ord-1)){

ale=runif(1) # gera um número entre zero e um
if(ord==1) E1[i+1]=E2[i]
if(ord==2) E1[i+1]=paste(unlist(strsplit(E1[i], "[-]"))[2],E2[i],sep="-")
if(ord==3) E1[i+1]=paste(unlist(strsplit(E1[i], "[-]"))[2],

unlist(strsplit(E1[i], "[-]"))[3],E2[i],sep="-")
if(ord==4) E1[i+1]=paste(unlist(strsplit(E1[i], "[-]"))[2],unlist(strsplit(E1[i], "[-]"))[3],

unlist(strsplit(E1[i], "[-]"))[4],E2[i],sep="-")
if(ord==5) E1[i+1]=paste(unlist(strsplit(E1[i], "[-]"))[2],unlist(strsplit(E1[i], "[-]"))[3],

unlist(strsplit(E1[i], "[-]"))[4],unlist(strsplit(E1[i], "[-]"))[5],E2[i],sep="-")
E2[i+1]= min(k[matac[E1[i+1],]>ale])

# FIMCUNI
vel1[i+1]=runif(1,ampli[E2[i+1]],ampli[E2[i+1]+ 1])

# FIMCAR
pxy=c(0,0)
repeat{

pxy=c(runif(1,ampli[E2[i+1]],ampli[E2[i+1]+1]), runif(1,0,max(den$y[den$x>=ampli[E2[i+1]]],
den$y[den$x<=ampli[E2[i+1]+1]])))
vel2[i+1]=pxy[1] # termina a rotina antes pausar ok
if(pxy[2]<=den$y[min(which(den$x>=pxy[1]))]) break

}
}

L=list(vel1,vel2,E2,mattra,np)
return(L)

}

# Function that calculates error measures
M_A=function(esti,obs) {
MAE=mean(abs(obs-esti))
MSE=sum(abs(obs-esti)^2)/length(obs)
RMSE=sqrt(mean((obs-esti)^2))
sMAPE=mean(abs(obs-esti)/(abs(obs)+abs(esti))/2)
L=data.frame(MAE,MSE,RMSE,sMAPE)
return(L)
}

# Function that checks if the events of an MC are independent (Enter with count transition matrix)
Indmc=function(M){
P=round(M/rowSums(M),4)
k=ncol(P)
alps=matrix(rep(0,k*k),ncol=k)
for(i in 1:k){
for(j in 1:k){
alps[i,j]=M[i,j]*log(P[i,j]/(colSums(M)[j]/sum(M))) } }
alps[is.nan(alps)] = 0
alp=sum(alps)*2 ; chi=qchisq(0.95,(k-1)^2) ; pval=1-pchisq(alp,(k-1)^2)
return(list(paste("Alpha =",round(alp,2),sep=" "), paste("Quantil a 5% = ",round(chi,2), sep=" "),

paste("P_valor = ",pval,sep=" ")))
}
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########################### Function that generates monthly SPI for 4 distributions #####################
## Enter with data.frame of two variables: 1st A numerical sequence of months, 2nd precipitation data
## Distributions used gamma (default), lognormal, logistic and Inverse Gaussian.
## Required "fitdistrplus" package for use of the "fitdist" function.

library(fitdistrplus)

SPI_men=function(dado,distr="gamma"){
myspi=NULL
for(k in 1:12){
x=dado[dado[,1]==k,] #
x=x[,2] # selecting precipitation data
xsz=x[x>0] # removing zeros
q=(length(x)-length(xsz))/length(x) # proportion of zeros

if(distr=="gamma"){
A=log(mean(xsz))-sum(log(xsz))/length(xsz)
alpha=(1/(4*A))*(1+sqrt(1+(4*A/3)))
Beta=mean(xsz)/alpha
hx=q+(1-q)*pgamma(x, alpha, 1/Beta) # scale=1/Beta is a gamma parameter
}

if(distr=="lognormal"){
ajln=fitdist(xsz,"lnorm")
hx=q+(1-q)*plnorm(x, ajln$estimate[1],ajln$estimate[2]) # perfeito #
}

if(distr=="weibull"){
ajw=fitdist(xsz,"weibull")
hx=q+(1-q)*pweibull(x, ajw$estimate[1],ajw$estimate[2]) # perfeito
}

if(distr=="invgauss"){
mxsz=mean(xsz);sdxsz=sd(xsz);vxsz=var(xsz)
fitig=fitdist(xsz, "invgauss",start=list(mxsz,sdxsz))
hx=q+(1-q)*pinvgauss(x, fitig$estimate[1],fitig$estimate[2]) # perfeito
}

t1=ifelse(hx<=0.5, sqrt(log(1/(hx)^2)), sqrt(log(1/(1-hx)^2)) )
tempspi=NULL
for (i in 1:length(x)){
if(hx[i]<=0.5) tempspi[i]=-1*(t1[i]-(2.515517+0.802853*t1[i]+0.010328*(t1[i])^2)/
(1+1.432788*t1[i]+0.189269*(t1[i])^2+0.001308*(t1[i])^3))
if(hx[i]>0.5) tempspi[i]=t1[i]-(2.515517+0.802853*t1[i]+0.010328*(t1[i])^2)/
(1+1.432788*t1[i]+0.189269*(t1[i])^2+0.001308*(t1[i])^3)
}
myspi[seq(k,dim(data)[1],12)]=tempspi

}
return(myspi)
}


	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Summary
	Introduction
	Markov Chain with Acceptance-Rejection: Variations in the Number of States
	Methodology for generating synthetic data using Markov Chain
	Markov Chain
	Acceptance-Rejection Method
	Generating synthetic data with the standard and the enhanced algorithm

	Results
	Conclusions and Discussions

	Markov Chain with Acceptance-Rejection: Exploring Higher Order Markov Chains
	Introduction
	Problems and solutions when using higher order Markov chains
	Increasing the number of states
	The problem of last observed sequence of states
	A possible solution using the FIMCAR algorithm

	Results
	Conclusions and Discussions

	Markov Chain with Acceptance-Rejection: Extracting Trend and Seasonality
	Introduction
	Extracting trend and seasonality of observed series

	Results
	Conclusions and Discussions

	Markov Chain with Acceptance-Rejection: Generating SPI Synthetic Data
	Introduction
	Material and methods
	Results
	Conclusions and discussions

	General conclusions and discussions
	Bibliography
	Referring to the chapters
	Error measures in ch. 2
	Error Measures in ch. 3
	Histogram for algorithm FIMCUNI in ch.3
	Error Measures in ch.4

	Commands in R

