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Abstract  

The phenotype of organism is the result of the interaction of a set of genetic, ecological, 

and environmental factors. Functional morphology investigates these phenotypic 

variations and geometric morphometry serves as a tool that helps in the understanding of 

ecological phenomena related to morphology. In this work we use geometric 

morphometry techniques on the marine fish body to understand ecological aspects linked 

to trophic ecology and habitat access at a community level. Fish were collected along the 

continental shelf of northeastern Brazil (4-9°S), and underwater footage was used to 

classify bottom habitat type into SWCR (sand with corals and rocks), Algae, and Sand. 

Individuals were photographed in lateral view, and shape was extracted using landmarks 

or contours techniques along the individuals' bodies. In total we analyzed 120 species 

distributed in 16 orders and 45 families of demersal fish. The relationship between body 

shape and trophic ecology indicated that lower trophic levels (herbivores and omnivores) 

are characterized by a deep body and large dorsal and anal fin bases. Top predators 

showed an elongated body and narrow fins. Using a multiple linear regression, we found 

that 46% of the variability in trophic level can be explained by morphometric variables, 

with increasing trophic level related to body elongation and fish size, the first time such 

a model has been proposed. Interestingly, intermediate trophic categories (e.g., low 

predators) showed morphological divergence for a given trophic level. The relationship 

between body shape and habitat type at first did not indicate clear patterns, when looking 

at the volume and morphological dispersion of the morphospace. However, when we 

considered the morphospace composed of the species with the highest abundances in each 

habitat type (All species present in the habitat, species with abundance ≥ 25% and with 

abundance ≥ 50%), we concluded that there is a tendency to find fish with more elongated 

body shape in the Sand type habitat when compared to the Algae and SWCR habitats. 

Overall, the 120 species are divided among 13 main fish shape groups, and body 

elongation rate was the main axis of variation found. The morphological characteristics 

found are directly related to swimming performance, where success in prey capture (e.g., 

top predators) and habitat access (species adapted to live in an open environment with 

high water flow velocity, e.g., sand habitats) are favored in species with elongated body 

shape. Morphological proximity had low congruence with the phylogenetic tree, 

indicating that our morphological approach cannot be used to observe phylogenetic 

proximity. Our results can be expanded to other tropical or non-tropical systems, showing 

that morphometric data can provide important insights into the functional characteristics 

of fish, especially in trophic ecology and habitat use. 

Key-words: geometric morphometrics, demersal fish, trophic ecology, habitat access, 

fish phenotypic expression, tropical marine habitats 
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Resumo 

O fenótipo do organismo é resultado da interação de um conjunto de fatores genéticos, 

ecológicos e ambientais. A morfologia funcional investiga essas variações fenotípicas e 

a morfometria geométrica serve como ferramenta que ajuda na compreensão dos 

fenômenos ecológicos relacionados a morfologia. Nesse trabalho nos utilizamos técnicas 

de morfometria geométrica no corpo de peixes marinhos, para entender aspetos 

ecológicos ligados a ecologia trófica e acesso ao habitat em um nível de comunidade. Os 

peixes foram coletados ao longo da plataforma continental do nordeste do Brasil (4-9°S), 

e filmagens subaquáticas foram utilizadas para classificar o tipo de habitat de fundo em 

SWCR (areia com corais e rochas), Alga e Areia. Os indivíduos foram fotografados em 

vista lateral, e a forma foi extraída através das técnicas de pontos homólogos ou contornos 

ao longo do corpo dos indivíduos. No total analisamos 120 espécies distribuídas em 16 

ordens e 45 famílias de peixes demersais. A relação entre forma corporal e ecologia 

trófica indicou que níveis tróficos menores (herbívoro e onívoros) são caracterizados por 

um corpo profundo e largas bases de nadadeiras dorsal e anal. Predadores de topo 

apresentaram corpo alongado e nadadeiras estreitas. Usando uma regressão linear 

múltipla, nos verificamos que 46% da variabilidade do nível trófico pode ser explicada 

por variáveis morfométricas, com aumento do nível trófico relacionado com alongamento 

corporal e tamanho do peixe, sendo a primeira vez que um modelo desse tipo foi proposto. 

Curiosamente, as categorias tróficas intermédias (ex., baixos predadores) apresentaram 

divergência morfológica para um dado nível trófico. A relação entre forma do corpo e 

tipo de habitat a princípio não indicou padrões claros, quando observamos o volume e 

dispersão morfológica do morfoespaço. Contudo, quando consideramos o morfoespaço 

formado pelas espécies com maiores abundâncias em cada tipo de habitat (Todas as 

espécies presente no habitat, espécies com abundância ≥ 25% e com abundância ≥ 50%), 

concluímos que existe uma tendência de encontrarmos peixes com forma corporal mais 

alongada no habitat do tipo Areia, quando comparado com os habitats Alga e SWCR. No 

geral, as 120 espécies estão divididas entre 13 principais grupos de forma de peixes, e a 

taxa de alongamento corporal foi o principal eixo de variação encontrado. As 

características morfológicas encontradas possuem relação direta com performance de 

nado, onde o sucesso em capturas das presas (ex., predadores de topo) e acesso ao habitat 

(espécies adaptadas a viver em um ambiente aberto que possue alta velocidade de fluxo 

d’agua, ex., habitat do tipo Areia) são favorecidas em espécies com formato corporal 

alongado. A proximidade morfológica teve baixa congruencia com a arvore filogenética, 

indicando que nossa abordagem morfológica não pode ser usada para observar 

proximidades filogenéticas. Nossos resultados podem ser expandidos a outros sistemas 

tropicais ou não-tropicais, mostrando que os dados morfométricos podem fornecer 

conhecimentos importantes sobre as características funcionais dos peixes, especialmente 

na ecologia trófica e uso do habitat. 

Palavras-chave: morfometria geométrica, peixes demersais, ecologia trófica, acesso ao 

habitat, expressão fenotípica de peixes, habitats tropicais marinhos 
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CHAPTER 1 

GENERAL INTRODUCTION 

Fish are one of the most diverse groups within the animal kingdom. Updated data from 

FishBase, a global database of fish information, indicate that there are currently just over 

34,000 known and registered fish species (Froese and Pauly, 2022), distributed in 

freshwater, estuarine, and marine systems around the globe. Thousands of researchers 

have developed scientific studies with fishes, generating knowledge in several areas, such 

as reproduction (Teixeira et al., 2004; Silva et al., 2018), age and growth (Lessa & Duarte-

Neto, 2004; Duarte-Neto et al., 2012; Gonzalez et al., 2022), taxonomy and phylogeny 

(Palacios et al., 2016; Souza et al, 2022), distribution (Rocha, 2003; Camargo et al., 

2004), trophic ecology (Albuquerque et al., 2019; Santos et al., 2022), habitat use 

(Anderson et al., 2019; Sabetian et al., 2021), aquaculture and production (Bezerra et al., 

2016; Fonseca et al., 2017) and morphology (Langerhans et al., 2003; López-Fernández 

et al., 2012). Among these and other areas of ichthyology, morphology, more specifically 

functional morphometry, stands out for its importance and for still being a promising area.  

The functional morphology investigates the relationships between morphology 

and functionality, highlighting changes in the function and performance of organisms 

caused by morphological variations and how this influences the use of their environment 

(Zelditch et al., 2004; Kirchheim & Goulart, 2010). In fish, functional morphology has 

investigated: swimming performance (Webb, 1982, 1984a; Liao, 2002), trophic 

relationships such as predation and common resource use (Burns et al., 2009; Farré et al., 

2016; Kumar et al., 2017), physical environmental factors (Langerhans, 2008; 

Sfakianakis et al., 2011), phylogeny and evolution (Ward & Brainerd, 2007; Claverie & 

Wainwright, 2014), trophic ecology (Scharf et al., 2000; Ward-Campbell et al., 2005; 

Collar et al., 2009; Faye  et al., 2012; López-Fernández et al., 2012), habitat use and 

adaptation (Yamada et al., 2009; Neat & Campbell, 2013; Foster et al., 2015), and others. 

Ecological aspects related to trophic ecology and habitat use are perhaps some of 

the most important topics in ichthyology. The fish trophic ecology is an essential 

characteristic in the understanding of ecosystems, especially when we consider that 

studies have shown the usability of trophic level to generate good results in stock 

assessment models, contributing to estimate mortality and production rates, degree of 

resource exploitation and ecosystem conservation (Sibert et al, 2006; Gaichas et al., 2010; 
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Jayasinghe et al., 2017; Lira et al., 2018). Consequently, understanding the mechanisms 

that permeate and define trophic relationships, as well as their functionalities, are also 

important in the sustainable management of these communities (Frisch et al., 2014; Lira 

et al., 2018; Pita & Freire, 2019). In turn, understanding habitat use by fish, which is also 

important in ecosystem comprehension, has generated good results in environmental 

conservation planning, defining important areas for fish communities (Farré et al., 2015; 

Eduardo et al., 2018).  

Most of the works that have investigated morphological relationships with trophic 

ecology and habitat have analyzed a low diversity of species or are scarce, especially 

when we consider the application of recent techniques of geometric conservation of 

individual shape (i.e., geometric morphometrics). For the relationship between shape 

versus trophic ecology, we can cite the studies with the families Sparidae (Costa & 

Cataudella, 2007; Antonucci et al., 2009) and Cichlidae (López-Fernández et al., 2012). 

Studies that establishe a relationship between fish shape in different marine habitats, 

encompassing a large diversity of species and assessed areas, are scarce. For example, 

Farré et al. (2015, 2016) analyzed the morphological pattern in different habitats in the 

western Mediterranean Sea (92 and 125 species, respectively), and Larouche et al. (2020) 

used a dataset of 3322 species to compare morphological variables (using linear 

morphometric) between reef and non-reef fishes. There are no studies of this magnitude 

(community level) in the tropical western Atlantic (tropical shelf of northeastern Brazil). 

The continental shelf of northeastern Brazil is characterised as narrow, with an 

average width of 40 km, average depth around 60 m, and the sediments that dominate are 

sandy and siliciclastic (inner part of the shelf) and carbonate (middle and outer part of the 

shelf) (Vital, 2014). The region is influenced by the South Equatorial Current and is 

characterized as a warm tropical zone, with oligotrophic waters poor in primary 

productivity (Heileman, 2009). Despite this, the northeastern brazilian shelf has a high 

fish diversity (Eduardo et al., 2018), this is also reflected in the diversity exploited by 

fisheries (Muller-Karger et al., 2017). Furthermore, we can also find within this region 

several Marine Protected Areas (e.g. ‘APA Costa dos Corais’, ‘APA dos Corais’, ‘APA 

Guadalupe’, ‘APA Santa Cruz’, ‘APA Ponta da Baleia/Abrolhos, and others) (Prates & 

Blanc, 2007). However, the northeastern marine ecosystem has been experiencing various 

anthropogenic pressures, such as those caused by fisheries (Freire & Pauly, 2010) and 

recently pollution due to oil spills (Soares et al., 2020). Therefore, developing research 
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within these ecosystems and communities are important in environmental management 

and conservation.  

Since 2015, the ABRACOS project (Acoustics along the BRAzilian COaSt) has 

been developing oceanological research on the continental shelf of northeastern Brazil. 

Having as main objective to initiate an integrated approach to monitor tropical marine 

ecosystems in this region and understand the connectivity between the subsystems that 

compose it, a 3D characterization of the abiotic and biotic compartments and their 

interactions in Northeast Brazil has been being carried out (Bertrand, 2015, 2017). This 

understanding has been done through several levels: using physical-chemical (Assunção 

et al., 2020), oceanographic (Silva et al., 2021, 2022), and biological (Eduardo et al., 

2018, 2020; Melo et al., 2020) data.  

In the present thesis, we try to understand ecological aspects using morphology of 

fish communities collected by ABRACOS, applying geometric morphometrics 

techniques. These thechniques correspond to a set of methods for acquiring, processing, 

and analyzing shape variables that retain the geometric information of the object or 

individual, which do not vary with changes in size, position, and orientation (Zelditch et 

al., 2004; Slice, 2005). Instead of using linear measurements on the individual, as in 

traditional linear morphometrics, geometric morphometrics uses points with coordinates 

in two or three dimensions (Zelditch et al., 2004; Aguirre and Prado, 2018). Besides the 

conservation of geometric properties, geometric morphometrics offers a variety of visual 

resources facilitating the interpretation of the results (Zelditch et al., 2004; Mitteroecker 

& Gunz, 2009; Klingenberg, 2013). There are two main analyzes used in geometric 

morphometrics depending on the shape extraction technique used: Generalized Procrustes 

Analysis used when we get the shape by the method of the landmarks and Elliptic Fourier 

Analysis used when we get the shape by the method of the outlines. Mathematical 

procedures of these two analyses have been summarized in Appendix A at the end of this 

thesis. 

 The main objective of the present work is to use techniques of geometric 

morphometrics on the body of marine fish species, to understand ecological aspects 

linked to trophic ecology and habitat at the community level, on the continental shelf of 

Northeastern Brazil. More specifically, it was aimed at:  
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• To establish for the first time a quantitative approach between body shape and trophic 

ecology for a diverse community of marine demersal fish in northeastern Brazil; 

• To verify which morphological features are related to trophic level (i.e., which 

characteristics can serve as proxy for trophic level determination in fish); 

• To determine the main shape groups of demersal fish found in the study region; 

• Study morphology within taxonomic gradient for species analyzed; 

• Application of morphospace to understand the relationship between body shape and 

different habitats (SWCR - sand with coral and rocks, Algae and Sand) on the 

continental shelf of northeastern Brazil. 

This PhD thesis was prepared in the form of scientific articles. The chapters are within 

the guidelines of the following journals: Chapter 2 – Journal of Fish Biology (Online 

ISSN: 1095-8649, in review) and Chapter 3 – Regional Studies in Marine Science (Online 

ISSN: 2352-4855).  
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CHAPTER 2 

Community-scale relationships between body shape and trophic ecology in tropical 

demersal marine fish of northeast Brazil 

Abstract: Functional morphology investigates the relationships between morphological 

characters and external factors, such as environmental, physical and ecological features. 

Here, we evaluate the functional relationships between body shape and trophic ecology 

of a tropical demersal marine fish community using geometric morphometrics techniques 

and modelling, hypothesizing that shape variables could partially explain fish trophic 

level. Fish were collected over the continental shelf of Northeast Brazil (4˗9°S). Analysed 

fish were distributed into 14 orders, 34 families and 72 species. Each individual was 

photographed in lateral view, and 18 landmarks were distributed along the body. A PCA 

applied on morphometric indices revealed that fish body elongation and fin base shape 

were the main axes of variation explaining the morphology. Low trophic levels (herbivore 

and omnivore) are characterised by deep bodies, and longer dorsal and anal fin bases, 

while predators present elongated bodies and narrow fin bases. Fin position (dorsal and 

anal fins) on the fish body is another important factor contributing to (i) body stability at 

high velocity (top predators) or (ii) manoeuvrability (low trophic levels). Using multiple 

linear regression, we verified that 46% of trophic level variability could be explained by 

morphometric variables, with trophic level increasing with body elongation and size. 

Interestingly, intermediate trophic categories (e.g., low predators) presented 

morphological divergence for a given trophic level. Our results, which can likely be 

expanded to other tropical and non-tropical systems, show that morphometric approaches 

can provide important insights into fish functional characteristics, especially in trophic 

ecology.   

Keywords: functional morphology, geometric morphometrics, morphological 

divergence, swimming performance, trophic level 

1. INTRODUCTION 

From a community perspective, trophic ecology has been related to a variety of features 

of fish biology and behaviour, such as resource use and overlapping food niches (Aguilar-

Medrano et al., 2019; Carrassón & Cartes, 2002; Pusey & Bradshaw, 1996), seasonality 

and changes in dietary habits (Dantas et al., 2015; Novakowski et al., 2008), habitat use 
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(Gibran, 2007; Souza et al., 2011), functional relationships with fishing activity (Freire 

& Pauly, 2010; Pauly et al., 1998), and individual functional morphology (López-

Fernández et al., 2012). This last approach investigates the relationships between 

morphology and functionality, highlighting changes in the function and performance of 

organisms caused by morphological variation and how this influences the use of their 

environment (Kirchheim & Goulart, 2010; Zelditch et al., 2004).  

Fish functional morphology is related, among other, to swimming performance 

(Liao, 2002; Webb, 1984a), trophic relationships such as predation and common resource 

use (Burns et al., 2009; Farré et al., 2016), habitat (Foster et al., 2015; Yamada et al., 

2009), physical environmental factors (Langerhans, 2008; Sfakianakis et al., 2011), 

phylogeny, and evolution (Claverie & Wainwright, 2014; Ward & Brainerd, 2007). 

Specifically, works studying body shape as a function of trophic ecology have related 

individual body characteristics to dietary content (López-Fernández et al., 2012; Pessanha 

et al., 2015), phylogenetic variations of trophic morphology (Linde et al., 2004; Muschick 

et al., 2012), morphological relations between prey and predator (Akin & Winemiller, 

2008). A strong correlation between morphology and feeding behaviour has been 

observed in several fish species (Brandl & Bellwood, 2013, 2014). Body shape 

relationships to trophic level have been developed but only for two fish families, Sparidae 

(Antonucci et al., 2009; Costa & Cataudella, 2007; Ventura et al., 2017) and Cichlidae 

(López-Fernández et al., 2012), a community approach is therefore still lacking.  

Geometric morphometrics (GM) is a relevant tool to achieve such a goal. This 

collection of methods allows studying morphological variations of individuals, preserving 

the geometrical proprieties contained in the data (Zelditch et al., 2004). Indeed, the effects 

of size, position and rotation are removed before analysis, which is an advantage over 

traditional methods (i.e., linear morphometry) (Aguirre & Prado, 2018; Zelditch et al., 

2004). Besides the conservation of geometric properties, GM offers a variety of visual 

resources facilitating the interpretation of the results (Klingenberg, 2013; Mitteroecker & 

Gunz, 2009; Zelditch et al., 2004). 

To extend the such analysis from one family to communities, we use the 

continental shelf of northeast Brazil, a typical tropical region that has a high demersal fish 

diversity (Eduardo et al., 2018), as a model ecosystem. We took advantage of a fish 

collection including 72 species from 34 families of demersal fish to propose a community 

perspective. Our main goal was to apply a GM approach to quantify the relationships 
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between fish body shape and food chain position, hypothesizing that shape variables 

could partially explain fish trophic level. We show that factors such as locomotion, 

predation and habitat access serve as a basis to elucidate a functional relationship between 

body shape and trophic ecology. Using multiple linear regression, we also show that the 

geometric shape representation combined with the maximum fish size can be used as a 

proxy for estimating the trophic level. 

2. MATERIALS AND METHODS 

2.1 Sampling 

The study area encompassed the Northeast Brazilian coast, from Rio Grande do Norte to 

Alagoas states (4˗9oS). In this region the continental shelf is relatively narrow (~40 km 

wide). It is a western boundary current system under the influence of the North Brazil 

Undercurrent (Dossa et al., 2021) characterized by a rather low stratification and deep 

thermocline (from ∼70 m to ∼170 m) with warm (typically 26-29°C) and saline (typically 

36.5-37.5) waters in the mixed-layer (Assunção et al., 2020). This oligotrophic region 

(Farias et al., 2022) is characterized by a relatively high biodiversity (Eduardo et al., 

2018; Giachini-Tosetto et al., 2022). 

 Fish were collected during the Acoustics along the Brazilian coast 2 (ABRACOS 

2; Bertrand, 2017) survey in May-April 2017, aboard the R/V Antea, along the continental 

shelf of Northeast Brazil (4º˗9ºS) (Figure 1). At each sampling station (19), fish were 

captured using a bottom trawl (body mesh: 40 mm, cod-end mesh: 25 mm and horizontal 

x vertical mouth dimensions: 28 x 10 m), at depths ranging from 10 to 60 m. Individuals 

were tagged and frozen for posterior analysis. For more details on the sampling process, 

see Eduardo et al. (2018).  
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Figure 1. Study area off Northeast Brazil Shelf. 

2.2 Images acquisition and obtaining the landmarks 

Each individual was identified to species level in the laboratory and photographed after 

unfreezing using a digital camera (CANON SX520, 16 Megapixels). Up to three adult 

individuals from each species were photographed in lateral view, with the head positioned 

to the left and the dorsal region upwards, following the methodology from Muir et al. 

(2012). To reduce errors in morphometric analyses, the camera lens was positioned 

parallel to the side surface of the fish using a tripod with a water level attached as a 

stabilizer, with the same illumination pattern and equipment adjustment. We also used 

some images obtained from FishBase (Froese & Pauly, 2022) for species with a sample 

size of less than three (Supplementary Information 1 - Table S1), following the same 

criteria: adult individuals and visible structures (i.e., fins, caudal peduncle, eye, among 

others) easy to identify in the images. 

Based on structures found in all specimens we defined 18 landmarks (12 true 

landmarks, 2 semi-landmarks, and 3 projected semi-landmarks) distributed along the 

body of the individuals (Figure 2). Semi-landmarks were used to overcome the lack of 

homology among species due to the large fish diversity of the present work. The projected 
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semi-landmarks were allocated from known landmarks with the help of three lines drawn 

along the body of each individual (see details in Figure 2). The first line was traced from 

the end of the upper lip to the middle of the caudal peduncle. The second line 

corresponded to a perpendicular intersection of the first line, passing through the centre 

of the eye and upper (landmark 2) and lower body (landmark 13) extremities. Finally, the 

third line was drawn perpendicularly to the first line passing through the lower base of 

the lateral fin to the lower body extremity (landmark 12). For the allocation of landmarks 

3, 4, and 5, we used as a criterion the region/perimeter covered by fins, regardless of the 

quantity or type of dorsal fin (i.e. with spines or soft rays). Thus, landmarks were allocated 

at the beginning of the dorsal fin perimeter (landmark 3) and at the end (landmark 5, when 

the entire region covered by the dorsal fin effectively ends), permitting the inclusion of 

species with one or two dorsal fins, or that have spiny fins, soft rays, among others (Figure 

2). The TPS family programs (tpsUtil64 and tpsDig232) (Rohlf, 2015) were used to obtain 

the landmark and semi-landmark coordinates (x, y). The 18 landmarks were obtained by 

a single operator to minimize errors. To estimate this error, the digitalization was repeated 

by the same operator three months later on images of a 15% random subsample (30 

individuals from different species). The repeatability coefficient was calculated using the 

inter (individual variation) and intragroup (repeated measurements) components of 

variance calculated from the mean square values of the Analysis of Variance (ANOVA, 

Supplementary Information 1 - Table S2) (Fruciano, 2016). 

 

Figure 2. Landmarks, semi-landmarks, and projected semi-landmarks used in this study. 

Image adapted from Froese and Pauly (2021). (1) Tip of the upper lip of mouth; (2) 

Uppermost point of the body touched by the perpendicular line passing through the center 
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of the eye; (3) Anterior beginning of dorsal perimeter covered by fins; (4) Middle point 

of dorsal surface covered by fins; (5) Posterior end of dorsal perimeter covered by fins; 

(6) Upper point of greatest concavity of the caudal peduncle; (7) Lateral midpoint of the 

caudal peduncle before the caudal fin begins; (8) Lower point of greatest concavity of the 

caudal peduncle; (9) Posterior point of anal fin; (10) Midpoint of anal fin; (11) Anterior 

point of anal fin; (12) Lower extremity of the body touched by the perpendicular line 

passing through the lower base of the lateral fin; (13) Lowermost point of the body 

touched by the perpendicular line passing through the centre of the eye; (14) Upper end 

of eye diameter; (15) Middle point of eye diameter; (16) Lower end of eye diameter; (17) 

Upper base of lateral fin; (18) Lower base of the lateral fin. Red lines: Line 1: 1-7, Line 

2: 2-13 and perpendicular to line 1, Line 3: 18-12 and perpendicular to line 1.  

2.3 Trophic level  

The trophic level (TL) expresses the position of a species within the food chain. It is 

estimated from the diet composition by assessing the dietary content of individuals (Costa 

& Cautadella, 2007; Pauly & Palomares, 2000; Stergiou & Karpouzi, 2002). The TL of 

each species is calculated by adding 1 to the sum of the trophic level of the prey items 

based on their contribution to the fish diet, where TLj is the trophic level of prey item j, 

DCij is the proportion of item j in the diet of species i and G is the number of prey items 

consumed, as a result we have the following equation: 𝑇𝐿 = 1 +  ∑ 𝐷𝐶𝑖𝑗 × 𝑇𝐿𝑗
𝐺
𝑗=1  (Pauly 

& Palomares, 2000). The TL typically ranges from 2.0 to ~5.0 for fish. It is conventionally 

partitioned into five trophic categories: herbivore, with TL between 2.0-2.2 (consuming 

preferentially 80% of vegetable matter); omnivore, with TL between 2.2-2.8 

(consuming 20% to 80% of herbivory animals); and predator with TL >2.8 (consuming 

preferentially 80% of animals of the omnivore TL). The last category can be subdivided 

into low predator (TL between 2.8-3.8), mid predator (TL between 3.8-4.2) and top 

predator (TL >4.2) (Antonucci et al., 2009; Pauly & Palomares, 2000). TLs were obtained 

for each species from FishBase (Froese & Pauly, 2022), and these values were estimated 

from a number of food items using a randomized resampling routine. When no TL was 

available for a species, its expected TL was estimated from the mean of the values 

observed for species of the same genus collected in this study (see Supplementary 

Information 1 - Table S1). Subsequently, we classified each species within one of the five 

established trophic categories (herbivore, omnivore, low predator, mid predator, or top 
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predator). We also obtained the maximum total length (Lmax, cm) for each species from 

FishBase (Froese & Pauly, 2022), from the ABRACOS surveys (Bertrand, 2015, 2017), 

or other scientific papers (Supplementary Information 1 - Table S1). 

2.4 Data analysis 

All analyses were performed in R version 3.6.1 (R Development Core Team, 2019). To 

extract the shape information of the individuals, we applied the Generalized Procrustes 

Analysis (GPA) to the matrix of landmark and semi-landmarks coordinates (x, y) of all 

specimens, using the ‘gpagen’ function from the 'geomorph' package version 3.1.3 

(Adams et al., 2019). The GPA is a procedure that translates all individuals to the same 

origin using a unit centroid scale through a least-squares criterion, making all the 

coordinates of the corresponding points align as closely as possible (Rohlf & Slice, 1990, 

Zelditch et al., 2004). The matrix of Procrustes shape variables resulting from this 

analysis, which represents the shape of each specimen, is invariant to size, position and 

rotation effects (Zelditch et al., 2004).  

 A Principal Component Analysis (PCA) was applied on the matrix of Procrustes 

variables to identify and characterise the main variations in fish shapes. The number of 

principal components (PCs) retained was determined from a segmented regression 

between the components and the variation explained by each, using the ‘segmented’ 

function from the 'segmented' package version 0.5-3.0 (Muggeo, 2008). The regression 

breakpoint was then used as a reference to determine the number of retained components 

and reduce the subjectivity of the scree plot criterion (Jackson, 1993). The body 

elongation was calculated for each species individually using the ‘coo_elongation’ 

function from the ‘Momocs’ package version 1.4.0 (Bonhomme et al., 2014). This index 

calculates the elongation based on the following formula: √(µ20 −  µ02)2 + 4µ11
2 /(µ20 +

 µ02), where µ20, µ02, and µ11 are the central moments of the ellipse circumscribed to the 

analysed shape (i.e., the fish body) (Roisin, 2005). As a result, this index informs the fish 

elongation, ranging from 0 to 1: closer to 1 - more elongated shape; or closer to 0 - deeper 

shape. This index was calculated to verify if any significant PCs explained the body 

elongation of the analysed species. 

  The matrix of average PC scores by species was then used as input data to a 

Canonical Variate Analysis (CVA) to verify the degree of separation between trophic 
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categories, that is, how similar or different the trophic categories are, using the ‘CVA’ 

function from the 'Morpho' package version 2.7 (Schlager et al., 2019). Subsequently, a 

MANOVA (overall and pairwise between trophic categories) was applied under the 

scores of the CVA to check the difference in shape between trophic categories (Zelditch 

et al., 2004).  

 A Multiple Linear Regression (MLR) was finally used to quantitatively assess the 

extent to which the TL can be estimated from shape variables (mean scores of the 

principal components retained for each species) and fish size. The order in which the 

explanatory variables were included in the model was defined based on the highest fit 

(R²) found in simple linear regressions between TL and the shape variables and Lmax. The 

relationship between trophic level and Lmax for fish is already known from several studies 

showing that the trophic level is positively related to fish size, where larger fish consume 

larger prey (i.e., of higher trophic levels) (Akin & Winemiller, 2008; Froese et al., 2004; 

Keppeler et al., 2020; Romanuk et al., 2011; Stergiou & Karpouzi, 2002). Body size is 

indeed a key variable influencing trophic interactions and the structure of the aquatic food 

chain, known as a good predictor of fish trophic levels (Akin & Winemiller, 2008). 

Beyond the facts presented above, Lmax is a specie parameter available in several sources: 

scientific articles, FishBase, and the sampling data of the study. Thus, a model for TL that 

uses only shape variables (obtained with geometric morphometric techniques) and the 

maximum size of the species was proposed in this study. The final model was chosen 

according to the lowest value for the Akaike Information Criterion (AIC) (Bozdogan, 

1987). All analyses were performed with a significance level of 5%. 

2.5 Ethics statement 

The authors confirm that all methods were approved and carried out in accordance with 

relevant guidelines and regulations of the Brazilian Ministry of Environment (SISBIO; 

authorization number: 47270–5). 

3. RESULTS 

We analysed 204 adult fish individuals distributed over 14 orders, 34 families and 72 

species (see Supporting Information Table S1). The digitalization of the landmarks was 

responsible for only 0.5% of the data variation (the repeatability coefficient was equal to 
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99.5%), confirming the reliability of the landmark allocation (see Supplementary 

Information 1 - Table S2).  

Only the first three principal components of the PCA, explaining 78.6% of the fish 

shape variation, were retained for posterior analyses (Figure 3a, b). PC1 (46.8% of the 

total variance) was related to the body elongation (Pearson correlation coefficient 

between PC1 and body elongation: 0.89) of individuals and the shape of the bases of the 

dorsal and anal fins. Fish with deeper bodies and longer dorsal and anal fin bases in the 

anterior-posterior dimension presented extreme negative values, while species with the 

highest body elongation rate and narrower fins presented positive values (Figure 3c). PC2 

(20.4% of the total variance) was related to the anterior region height of the body (i.e., 

head region) and the position of the dorsal fin. Individuals with the narrowest height (i.e., 

a fusiform body) and widest dorsal fin, positioned more anteriorly on the body (positive 

values in PC2) were opposed to the tallest individuals with the dorsal fin positioned in 

the posterior region of the body (more aligned with the anal fin) (Figure 3c). Finally, PC3 

(11.4% of the total variance) was related, more weakly, to the alignment of the dorsal and 

anal fins. Fish with fins aligned (negative values in PC2) were opposed to those presenting 

less aligned dorsal and anal fins (Figure 3c). Species representative of the extremes of 

each PC were: Acanthurus coeruleus (-PC1), Fistularia tabacaria and F. petimba (+PC1), 

Ostraciidae and Monacanthidae families (+PC2), Scomberomorus brasiliensis (-PC2), 

Echeneis naucrates (-PC3), and Bagre marinus (+PC3) (Figure 3c). 
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Figure 3. The variance explained by the first ten principal components (PC) (a), and scree 

plot of the segmented regression indicating the first three significant PCs: PC1 (46.8%), 

PC2 (20.4%) and PC3 (11.4%) (b). Fish body shape variation as a function of the degree 

of deformation concerning the general average shape, at the extreme values (negative and 

positive) in the three first principal components (PCs) (c). The codes and respective 

species names are described in Supplementary Information 1 (Table S1). Red dotted lines 

represent the base variation in dorsal and anal fins. Black arrows on extreme shapes 

indicate deformation direction compared to the average shape. Source of fish drawings: 

Carpenter (2002a,b). 

 The morphospace occupied by the species on the biplot of average scores of the 

three PCs facilitated the interpretation of the data at the species level (Figure 4) and by 

trophic category (Figure 5a,b). Lower trophic categories (herbivore and omnivore) were 

restricted to negative values of PC1, and the intermediary category (e.g., low predator) 

had greater amplitude for all PCs. In contrast, top predators occupied only positive values 

of PC1 (Figure 5a,b). According to the trophic category, the deformation of fish shape 

from the general average clearly reveals that body elongation increases with the trophic 

category; lower trophic categories present a deeper body shape (Figure 5c). The 
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MANOVA revealed a significant difference between fish shapes by trophic category 

(Wilk's Lambda=0.014; df=4, 16; F=36.9; p<0.001). The pairwise MANOVA indicated 

differences between all trophic categories, except between herbivores and omnivorous 

(Table 1).  

 

 Figure 4. Average PCs for the 72 fish species analysed in this study, plotted for PC1 vs 

PC2 (a) and PC1 vs PC3 (b). The codes and respective species names can be seen in 

Supplementary Information 1 (Table S1). Source of fish drawings: Carpenter (2002a,b). 
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Figure 5. PCs scores for the 72 fish species analysed, discriminated by trophic category, 

plotted for PC1 vs PC2 (a) and PC1 vs PC3 (b). Evolution of the average fish shape 

according to the trophic level (c) - black arrows in each trophic category indicate the 

direction of deformation compared to the overall average shape. 

Table 1. MANOVA results between trophic categories of the analysed fish. Values 

represents F statistics and p-value (in parenthesis) for pairwise MANOVA between 

trophic categories. 

Trophic category Herbivore Omnivore Low predator Mid predator 

Omnivore 2.3 (p=0.189*)    

Low predator 28.9 (p<0.001) 17.5 (p<0.001)   

Mid predator 10.7 (p<0.001) 23.1 (p<0.001) 29.9 (p<0.001)  

Top predator 138.2 (p<0.001) 26.9 (p<0.001) 71.9 (p<0.001) 22.7 (p<0.001) 

* p>0.05, no statistically different. 

 The results of simple and multiple linear regressions are presented in Table 2. 

Individually, PC1 was the variable that most explained fish TL variability (R2 = 0.34). 

The positive angular coefficient of this regression indicates that the more elongated the 

body, and the narrower the base of dorsal and anal fins, the higher the trophic position. 

Other variables, such as maximum total length (Lmax) and PC2, influenced to a lesser 
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extent, emphasising the Lmax, which individually explained 25% of data variation and 

presented a positive relationship with TL. The PC3 did not show any relationship with 

TL, so it was not included in the final model. The model with the lowest AIC value was 

the full model (without PC3), which explained approximately 46% of the fish TL (Table 

2). This indicates that morphometric characteristics can be considered variable indicators 

of the fish trophic level. 

Table 2. Coefficients of the evaluated models (simple and multiple) of the relationships 

between trophic level (a numerical representation of the trophic category), the shape 

variables (PC1, PC2, and PC3) and maximum total length (Lmax) of the analysed tropical 

marine fish. AIC = Akaike Information Criterion. R² = Multiple determination 

coefficients. 

Model Intercept PC1 Lmax PC2 PC3 F test AIC R² 

 Simple models 

NULL 3.5103 — — — —  121.15  

1 3.5047 2.3299 — — — 35.4 93.72 0.340 

2 3.1438 — 0.0065 — — 23.8 102.11 0.253 

3 3.5132 — — 1.3545 — 4.6 119.47 0.050 

4 3.5103 — — — 0.0264 0.0007* 123.15 1.0×10-5 

 Multiple models 

5 3.2951 1.7613 0.0037 — — 23.0 88.43 0.399 

6 (final model) 3.2971 1.7860 0.0038 1.4640 — 19.1 83.11 0.460 

* p>0.05, not statistically significant. ‘—’ represents that the variable was not included in 

the model. 

4. DISCUSSION 

Body elongation rate was the most significant source of morphological variation among 

fish species. This result confirms previous studies (Astudillo-Clavijo et al., 2015; Caillon 

et al., 2018; Claverie & Wainwright, 2014; López-Fernández et al., 2012) and generalises 

this perspective to a community-scale encompassing a broad range of species (14 orders, 

34 families and 72 species). Evolutionarily, a more elongated body in fish is related to 

the segmentation and number of vertebrae of the vertebral column and to the increased 

length of the head (Ward & Mehta, 2010), a characteristic previously depicted in 
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Actinopterygii in general (Ward & Brainerd, 2007), Gobiidae family (genus Luciogobius) 

(Yamada et al., 2009), and Elopomorpha species (Mehta et al., 2010).  

 Webb (1984a) proposed three main fish body morphotypes that influence 

swimming performance: the first characterized by a deep body (manoeuvring specialist), 

and the last two for fish with a more elongated body shape; one for species with a narrow 

caudal peduncle (cruising specialist) and another with a deep caudal peduncle 

(acceleration specialist) (Webb, 1984a). Swimming is also intrinsically related to the 

more pointed head shape, allowing for better hydrodynamics of the fish (Liao, 2002). The 

body shape in conjunction with the base shape of the fins, another key characteristic 

depicted in our results, acts directly on fish locomotion (Webb, 1984a,b). The fins 

evaluated in the present study were the dorsal and anal fins, which, together with the 

caudal fin, are called 'median fins' (Lauder & Drucker, 2004). The dorsal fin acts mainly 

in the execution of manoeuvres and helps the caudal fin in propulsion, while the anal fin 

helps the dorsal fin to maintain the fish body stability in the water (Lauder & Drucker, 

2004), all these characteristics act together during locomotion. 

 Body maintenance within the water column is a primary factor in the foraging 

behaviour of many fish species. For instance, the deep body shape (which reduces vertical 

turning during manoeuvres, Webb, 1984a) and longer dorsal and anal fin bases of 

Acanthuridae and Chaetodontidae families permit the execution of precise movements in 

resource exploration (Brandl & Bellwood, 2013, 2014), mainly in structured 

environments such as coral reefs where these species usually inhabit (Dias et al., 2008). 

Our results (i.e. PC1) opposed fish with a deep body and longer fin bases to those 

presenting more elongated body shapes. The first group corresponds to low TL species, 

typically herbivores, omnivorous, and some low predators (Figure 5a,b). This 

morphology allows precise movements enabling access to structured environments 

according to their ecological niche. In turn, the TL increases with the body-shape 

elongation. Similar results were found in Sparidae (Antonucci et al., 2009; Costa & 

Cataudella, 2007) and Cichlidae (López-Fernández et al., 2012). An elongated fish shape 

increases the success of prey capture for active predators, especially during the search for 

dispersed prey (Costa & Cataudella, 2007; Webb, 1984b; Winemiller, 1991), by 

permitting quick acceleration and high speed during the hunt (Blake, 2004). Besides, 

several other factors act on the success of prey capture, including mouth morphology, 

teeth, jaw strength, and capture tactics (Wainwright & Bellwood, 2002). Sphyraena 
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barracuda (TL=4.50 and positive PC1 axis) is a large predator that has a strong bite and 

uses the rapid acceleration of its body to capture its prey (Grubich et al., 2008). Similar 

behaviour has been observed in hunting and capture tactics in trumpetfish (order 

Syngnathiformes, TL=4.43-4.50) (Auster, 2008; Tegge et al., 2020).  

 Our analysis discriminated high TL species, with narrower fin bases (positive PC1 

axis), from lower TL ones with longer fin bases. In addition, the position of the dorsal 

and anal fins plays an important role in balancing the fish’s body by acting together 

(Breda et al., 2005; Lauder & Drucker, 2004). The asymmetry of the dorsal fin with anal 

fins (negative PC2 axis) serves as a stabilising rudder during propulsion and high speeds, 

preventing the fish from rotating around its longitudinal axis (Breda et al., 2005). Species 

that presented this characteristic, such as the spanish mackerel (Scomberomorus 

brasiliensis) or the great barracuda (Sphyraena barracuda) are top predatory and highly 

migratory species that can travel long distances (Batista & Fabré, 2001; O’Toole et al., 

2011). This can also be observed in large tuna migrators (Itoh et al., 2003).  

 On the other hand, symmetrical fins allow a synchronised movement of dorsal and 

anal fins, together with the caudal fin, providing stability. Such motion is often used in 

body braking, allowing precise manoeuvres (Breda et al., 2005). Reef species such as 

Ostraciidae (box-fish) and Monacanthidae (Eduardo et al., 2020) present such 

characteristics (Figures 3c and 4). They inhabit a structured environment, where 

locomotion is not characterised by high speeds but by manoeuvres. Box-fish are indeed 

known to use strategic movements of their fins and body to enhance swimming ability in 

complex environments (Van Wassenbergh et al., 2015). 

 As much as 46% of trophic level variability could be explained by morphometric 

variables. These results are the first ones using multiple regression, considering a set of 

morphometric and size variables, to understand trophic level in a quantitative approach. 

We also found a significant positive relationship between body size and fish TL; the 

greater Lmax, the greater their trophic position (Table 2). This pattern was classically 

observed (Akin & Winemiller, 2008; Froese et al., 2004; Keppeler et al., 2020; Romanuk 

et al., 2011; Stergiou & Karpouzi, 2002), with Lmax being a good predictor of fish trophic 

levels. Many studies also have associated the maximum fish size with the extension of 

the habitats they live in (Nash et al., 2015; Welsh & Bellwood, 2014), for example, in 

reef fish, larger fish live in wider habitats (Nash et al., 2015). The trophic position of an 

individual or its morphological aspects is the result of many factors’ interaction and 
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finding the final equation of complex natural processes involves the analysis and 

knowledge of the individual relationships between those factors. 

 Other factors are also related to the fish body shape. A classic example is the water 

flow where fish inhabit. The need to break the physical barrier imposed by the water 

speed (high flow) selects an elongated body shape (Foster et al., 2015; Langerhans, 2008; 

Liao, 2002). On the opposite, species with a deep body (better manoeuvres) flourish in a 

structured environment such as coral reefs and rocky bottoms, presenting natural barriers 

that decrease water dynamics and velocity (Bejarano et al., 2017; Johansen, 2014). 

 Low predators were characterised by a high morphological amplitude, occupying 

several positions within the morphospace (Figure 5a,b). Such wide large morphological 

space for a given trophic level may be related to a set of niches and external factors, which 

also influence different degrees of the fish shape besides morphology and trophic ecology 

(Portner et al., 2010). Indeed, a variety of other factors are known to influence fish body 

shape, such as predator-prey relationships (Burns et al., 2009; Price et al., 2015), 

physicochemical conditions (Farré et al., 2016; Georgakopoulou et al., 2007; Sfakianakis 

et al., 2011) or genetic (Marcil et al., 2006). Phenotypic variation in body shape can act 

on how individuals will use the resources around them and may also limit their feeding 

range due to specialisation (Collar et al., 2009; López-Fernández et al., 2012). 

Conversely, morphological specialisation (i.e., a highly specialised shape in one function) 

does not always follow a parallel path with feeding specialisation, as verified in reef fish 

(Brandl et al., 2015). Therefore, it is evident that the low predators from the same trophic 

position (TL: 2.8-3.8) may present a wide range of morphological features; that is, even 

though they are feeding on prey from the same TL they present very diversified body 

shapes. Despite the high diversity of the species analysed in the present study, the trophic 

categories do not have equally balanced diversity as a matter of sampling (e.g., herbivores 

with only four species belonging to two genera). This makes it difficult to account for 

phylogenetic effects within trophic categories. Therefore, we recommend that future 

studies take this into consideration by encompassing a greater diversity of species within 

different trophic levels. 

5. CONCLUSIONS 

Here we present the first quantitative relationship between fish morphology and trophic 

ecology at a community level. Our results which may likely be expanded to other tropical 
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and non-tropical systems show that fish with elongated body shapes had a high TL, while 

those with deep body shapes had a low TL. The shape of the base of the dorsal and anal 

fins also contributed to explaining the TL. Top predators were characterised by narrow 

fin bases while herbivores and omnivorous presented longer fins related. Between these 

extremes, the intermediate trophic category (low predator) shows morphological 

divergence as a function of TL.  

From a broader perspective, the geometric morphometric and regression analyses 

allowed us to infer more precisely the contribution of the morphological aspects of the 

fish body in their trophic ecology. Body elongation and fin characteristics were the main 

explanatory variables for fish TL. Combined with maximum fish size (Lmax), they 

explained 46% of the TL variability and can be considered an excellent proxy to represent 

the trophic pattern of fish species. Fish morphology is, therefore, a key factor in the 

ecological study of communities, especially in trophic ecology.   
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SUPPLEMENTARY INFORMATION 1 

Table S1. List of 72 tropical marine fish species analysed in this study, caught on the shelf of northeastern Brazil. Lmax (maximum total length in cm). 

*Approximate Trophic level based on the average value of the species of the same genus found in the present study or on the trophic level of closest relatives. 

Lmax values according to: a Benevides et al. (2016); b Fonseca et al. (2021). Other Lmax values were obtained from FishBase (Froese & Pauly, 2022). BE is 

the average body elongation index per specie, and Total length is the total length variation (min-max, in cm) of the sampled individuals. Source images: 

ABRACOS surveys (Ab) and/or FishBase (FB). 

Order Family Species Code 
Trophic 

level 

Trophic 

category 
Lmax BE 

Total length 

(min-max, cm) 

Images source  

(number) 

Acanthuriformes Acanthuridae 
  

  

Acanthurus bahianus Castelnau, 1855 aca.bah 2.12* herbivore 30.0a 0.527 18.37 - 20.33 Ab (3) 

Acanthurus chirurgus (Bloch, 1787) aca.chi 2.74 omnivorous 39.0 0.523 27.03 - 27.41 Ab (3) 

Acanthurus coeruleus Bloch & Schneider, 1801 aca.coe 2.15 herbivore 39.0 0.393 25.90 - 31.80 Ab (3) 

Chaetodontidae 
  

Chaetodon ocellatus Bloch, 1787 cha.oce 3.50 low predator 20.0 0.335 10.98 - 14.47 Ab (3) 

Chaetodon striatus Linnaeus, 1758 cha.str 2.77 omnivorous 16.0 0.340 8.40 - 11.97 Ab (3) 

Pomacanthidae 
  

Holacanthus ciliaris (Linnaeus, 1758) hol.ads 3.12 low predator 45.0 0.399 22.44 - 24.70 Ab (3) 

Pomacanthus paru (Bloch, 1787) pom.par 3.10 low predator 41.1 0.285 26.72 - 38.65 Ab (3) 

Albuliformes Albulidae Albula vulpes (Linnaeus, 1758) alb.vul 3.66 low predator 104.0 0.793 22.73 - 37.72 Ab (2), FB (1) 

Aulopiformes 

  

Synodontidae 

  

Synodus foetens (Linnaeus, 1766) syn.foe 4.43 top predator 53.8 0.872 19.43 - 19.61 Ab (1), FB (2) 

Trachinocephalus myops (Forster, 1801) tra.myo 4.17 mid predator 25.0 0.797 16.40 - 19.54 Ab (1), FB (2) 

Carangiformes 

  
  

  

  
  

  

Carangidae 

  
  

  

  
  

  

Caranx crysos (Mitchill, 1815) car.cry 3.63 low predator 70.0 0.688 36.67 - 46.70 Ab (3) 

Chloroscombrus chrysurus (Linnaeus, 1766) chl.chr 3.53 low predator 65.0 0.594 19.72 - 21.49 Ab (3) 

Decapterus punctatus (Cuvier, 1829) dec.pun 3.26 low predator 30.0 0.785 18.81 - 19.40 Ab (3) 

Decapterus tabl Berry, 1968 dec.tab 3.22 low predator 50.0 0.810 22.56 - 23.74 Ab (3) 
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  Selar crumenophthalmus (Bloch, 1793) sel.cru 3.57 low predator 70.0 0.740 23.67 - 25.53 Ab (3) 

Selene brownii (Cuvier, 1816) sel.bro 3.67* low predator 29.0 0.328 14.11 - 19.50 Ab (2), FB (1) 

Selene vomer (Linnaeus, 1758) sel.vom 3.67 low predator 48.3 0.365 18.20 - 19.96 Ab (3) 

Echeneidae Echeneis naucrates Linnaeus, 1758 ech.nau 3.40 low predator 110.0 0.905 52.36 - 53.45 Ab (3) 

Clupeiformes Clupeidae Opisthonema oglinum (Lesueur, 1818) opi.ogl 3.60 low predator 38.0 0.690 10.54 - 11.76 Ab (3) 

Dactylopteriformes Dactylopteridae Dactylopterus volitans (Linnaeus, 1758) dac.vol 3.68 low predator 50.0 0.821 28.41 - 31.21 Ab (2), FB (1) 

Elopiformes Elopidae Elops saurus Linnaeus, 1766 elo.sau 4.11 mid predator 100.0 0.810 30.19 - 58.62 Ab (2), FB (1) 

Holocentriformes Holocentridae Holocentrus adscensionis (Osbeck, 1765) hol.cil 3.40 low predator 61.0 0.689 24.59 - 31.10 Ab (3) 

Mulliformes 

  

Mullidae 

  

Mulloidichthys martinicus (Cuvier, 1829) mul.mar 3.50 low predator 44.8 0.730 22.02 - 25.32 Ab (3) 

Pseudupeneus maculatus (Bloch, 1793) pse.mac 3.37 low predator 30.0 0.732 20.93 - 24.29 Ab (3) 

Perciformes 

  

  
  

  

  
  

  

  
  

  

  
  

  

  
  

  

  

  

  

  
  

  

  
  

Gerreidae 

  

  

Eucinostomus argenteus Baird & Girard, 1855 euc.arg 3.32 low predator 21.0 0.689 18.35 - 20.88 Ab (3) 

Eucinostomus gula (Quoy & Gaimard, 1824) euc.gul 3.13 low predator 25.0 0.636 12.26 - 15.64 Ab (3) 

Ulaema lefroyi (Goode, 1874) ula.lef 3.22* low predator 23.0 0.692 13.85 - 19.90 Ab (3) 

Haemulidae 
  

  

  
  

  

  

Anisotremus virginicus (Linnaeus, 1758) ani.vir 3.44 low predator 40.6 0.526 17.41 - 20.58 Ab (2), FB (1) 

Haemulon aurolineatum Cuvier, 1830 hae.aur 3.19 low predator 25.0 0.676 17.65 - 20.24 Ab (3) 

Haemulon melanurum (Linnaeus, 1758) hae.mel 3.50 low predator 33.0 0.657 28.95 - 30.41 Ab (3) 

Haemulon plumierii (Lacepède, 1801) hae.plu 3.78 low predator 53.0 0.617 23.63 - 27.24 Ab (3) 

Haemulon squamipinna Rocha & Rosa, 1999 hae.squ 3.49* low predator 19.5 0.652 16.40 - 17.72 Ab (3) 

Haemulon steindachneri (Jordan & Gilbert, 1882) hae.ste 3.50 low predator 30.0 0.628 16.37 - 16.67 Ab (3) 

Orthopristis rubra (Cuvier, 1830) otr.rub 3.60 low predator 40.0 0.647 16.92 - 18.41 Ab (3) 

Labridae Halichoeres dimidiatus (Agassiz, 1831) hal.dim 3.60* low predator 27.0 0.734 17.82 FB (1) 

Lutjanidae 
  

  

Lutjanus analis (Cuvier, 1828) lut.ana 3.92 mid predator 94.0 0.627 20.19 - 27.25 Ab (3) 

Lutjanus synagris (Linnaeus, 1758) lut.syn 3.66 low predator 60.0 0.618 18.54 - 21.92 Ab (3) 
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Ocyurus chrysurus (Bloch, 1791) ocy.chr 3.88 mid predator 86.3 0.663 33.58 - 38.53 Ab (3) 

Priacanthidae Heteropriacanthus cruentatus (Lacepède, 1801) het.cru 3.70 low predator 50.7 0.658 24.83 - 27.07 Ab (3) 

Scaridae 

  

Sparisoma axillare (Steindachner, 1878) spa.axi 2.00* herbivore 43.6 0.584 16.53 - 27.85 Ab (3) 

Sparisoma frondosum (Agassiz, 1831) spa.fro 2.00* herbivore 45.0b 0.631 35.00 FB (1) 

Sciaenidae Pareques acuminatus (Bloch & Schneider, 1801) par.acu 3.50 low predator 23.0 0.628 11.46 - 13.88 Ab (3) 

Scorpaenidae Scorpaena plumieri Bloch, 1789 sco.plu 4.04 mid predator 45.0 0.632 20.54 - 21.32 Ab (2), FB (1) 

Serranidae 
  

  

Alphestes afer (Bloch, 1793) alp.afe 4.01 mid predator 33.0 0.631 24.00 - 28.30 Ab (3) 

Cephalopholis fulva (Linnaeus, 1758) cep.ful 4.25 mid predator 44.0 0.646 25.64 - 27.58 Ab (3) 

Diplectrum formosum (Linnaeus, 1766) dip.for 4.15 mid predator 30.0 0.729 17.65 - 18.67 Ab (3) 

Sparidae 

  
  

Calamus calamus (Valenciennes, 1830) cal.cal 3.44* low predator 56.0 0.543 21.07 - 25.89 Ab (3) 

Calamus penna (Valenciennes, 1830) cal.pen 3.35 low predator 46.0 0.545 21.41 - 23.68 Ab (3) 

Calamus pennatula Guichenot, 1868 cal.pet 3.54 low predator 37.0 0.560 21.83 - 23.76 Ab (3) 

Sphyraenidae 

  

Sphyraena barracuda (Edwards, 1771) sph.bar 4.50 top predator 200.0 0.847 37.00 - 37.64 Ab (3) 

Sphyraena guachancho Cuvier, 1829 sph.gua 4.38 top predator 200.0 0.854 44.91 - 51.92 Ab (3) 

Triglidae Prionotus punctatus (Bloch, 1793) pri.pun 3.77 low predator 45.0 0.772 15.48 - 19.12 Ab (2), FB (1) 

Scombriformes 
  

Nomeidae Cubiceps pauciradiatus Günther, 1872 cub.pau 3.65 low predator 20.0 0.759 8.78 - 9.39 Ab (3) 

Scombridae Scomberomorus brasiliensis Collette, Russo & Zavala-Camin, 1978 sco.bra 4.37 top predator 125.0 0.784 43.58 - 44.49 Ab (3) 

Siluriformes Ariidae Bagre marinus (Mitchill, 1815) bag.mar 3.88 mid predator 69.0 0.764 38.91 - 41.77 Ab (3) 

Syngnathiformes 

  
  

Aulostomidae Aulostomus maculatus Valenciennes, 1841 aul.mac 4.44 top predator 100.0 0.920 27.58 - 28.71 Ab (3) 

Fistulariidae 

  

Fistularia petimba Lacepède, 1803 fis.pet 4.43 top predator 200.0 0.967 51.77 - 57.18 Ab (3) 

Fistularia tabacaria Linnaeus, 1758 fis.tab 4.50 top predator 200.0 0.956 67.55 - 77.04 Ab (3) 

Tetraodontiformes 

  

  

Balistidae 

  

Balistes capriscus Gmelin, 1789 bal.cap 3.45 low predator 60.0 0.459 31.01 - 31.79 Ab (2), FB (1) 

Balistes vetula Linnaeus, 1758 bal.vet 3.34 low predator 60.0 0.471 20.08 - 37.21 Ab (3) 
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Diodontidae 

  

Chilomycterus spinosus (Linnaeus, 1758) chi.spi 3.60* low predator 28.0 0.662 22.07 - 22.28 Ab (2) 

Diodon holocanthus Linnaeus, 1758 dio.hol 3.31 low predator 50.0 0.729 19.00 - 25.40 Ab (2), FB (1) 

Monacanthidae 

  

  
  

  

Aluterus monoceros (Linnaeus, 1758) alu.mon 3.49 low predator 76.2 0.654 28.58 - 49.90 FB (3) 

Aluterus scriptus (Osbeck, 1765) alu.scr 3.02 low predator 110.0 0.632 36.00 - 46.00 FB (2) 

Cantherhines macrocerus (Hollard, 1853) can.mac 2.74 omnivorous 46.0 0.526 12.63 - 14.88 Ab (3) 

Cantherhines pullus (Ranzani, 1842) can.pul 2.90 low predator 20.0 0.472 12.88 - 15.43 Ab (3) 

Stephanolepis hispida (Linnaeus, 1766) ste.his 2.76 omnivorous 36.9 0.432 16.88 - 19.00 Ab (3) 

Ostracidae 

  

  

Acanthostracion polygonius Poey, 1876 aca.pol 3.35 low predator 50.0 0.614 21.95 - 22.81 Ab (3) 

Acanthostracion quadricornis (Linnaeus, 1758) aca.qua 3.77 low predator 55.0 0.660 20.76 -27.51 Ab (3) 

Lactophrys trigonus (Linnaeus, 1758) lac.tri 3.56* low predator 55.0 0.681 34.81 - 39.38 Ab (3) 

Tetraodontidae 

  

Sphoeroides dorsalis Longley, 1934 sph.dor 3.40* low predator 20.0 0.745 14.90 FB (1) 

Sphoeroides spengleri (Bloch, 1785) sph.spe 3.50 low predator 30.0 0.756 10.85 Ab (1) 

 

 

Table S2. Analysis of variance and estimation of the Repeatability coefficient in a subsample of 15% of the analyzed individuals. SS: sum of squares, MS: 

mean squares. 

Effect SS MS Variance component  Repeatability 

Intergroups  

(among individuals) 

1.3523 0.0466 0.0232 0.995 

Intragroups  

(between measurements) 

0.0032 0.0001 0.0001  
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CHAPTER 3 

Fish morphological diversity versus habitat type in tropical demersal marine 

environment 

Abstract: The marine demersal environment is composed of a set of habitats that are 

home to a great diversity of fish species. In a given community, fish morphology could 

be shaped by the habitat types they occupy. Here we studied the morphological pattern of 

a demersal fish community in a tropical marine environment (Brazil 4°-9°S). Fish were 

collected by bottom trawl during the two surveys (August-September 2015 and April-

May 2017). Simultaneously underwater footage were taken to classify the habitats into 

SWCR (Sand with rocks, coralline formations, and sponges), Algae and Sand. Fish 

morphology was accessed using Elliptic Fourier Analysis, on body shape. We analyzed 

120 species distributed in 16 orders and 45 families. Body elongation was the main source 

of morphological variation, followed by caudal fin and dorsal fin shape. We found 13 

main shape groups, evidencing the great morphological diversity. The morphological 

clustering showed low congruence with the phylogenetic tree, indicating that our 

morphological approach cannot be used to observe phylogenetic proximities. Using 

morphospace as a three-dimensional structure reavels that the SWCR habitat showed the 

greatest values of diversity and morphological amplitude. In addition, the greater 

morphological similarity occurred in Sand habitat where we observed the greater 

abundance of species with elongated body patterns, that are well adapted to live in open 

habitats with higher water flow. We recommend that this work can be expanded to other 

areas, because morphological comprehension is fundamental to understanding the 

ecosystem dynamics, especially in coral reefs.   

Keywords: Phenotypic diversity, Elliptic Fourier Analysis, Morphospace, Fish shape 

groups, Habitat complexity 

1. INTRODUCTION 

The phenotype of an organism is the result of the interaction of a set of genetic, ecological, 

and environmental factors (Hill and Mulder, 2010). Fish morphology is influenced, to a 

greater or lesser extent, by a variety environmental interactions, including those 

associated with physical (Georgakopoulou et al., 2007), chemical (Crispo and Chapman, 

2010; Pauly and Cheung, 2018), ecological (Costa and Cataudella, 2006; Burns et al., 

2009; López-Fernández et al., 2012) factors, and also through the habitat that these 
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species live in (Yamada et al., 2009; Farré et al., 2016). Functional morphology 

investigates these phenotypic variations by studying the relationships between 

morphology (i.e., phenotypic expression) and external factors (environmental and/or 

biological) (Mota et al., 1995; Kirchheim and Goulart, 2010). Understanding 

morphological patterns in the context of species (Russo et al., 2007), community (Ventura 

et al., 2017) or ecosystem (Silva-Júnior et al., 2017), has generated promising results that 

helped elucidating important ecological questions in the field of ichthyology, especially 

those linked to trophic ecology and organism functionality (Villéger et al., 2017). In this 

context, fish morphology is influenced by several environmental interactions, to a greater 

or lesser extent, such as those associated with physical factors (Georgakopoulou et al., 

2007), chemical (Crispo and Chapman, 2010; Pauly and Cheung, 2018), ecological 

(Costa and Cataudella, 2006; Burns et al., 2009; López-Fernández et al., 2012), and also 

through the habitat that these species live in (Yamada et al., 2009; Farré et al., 2016). 

 Most works studying fish shape as a function of habitat are focused on freshwater 

species (e.g., Svanback and Eklov, 2002; Langerhans et al., 2003; Willis et al., 2005; 

Franssen, 2011; Foster et al., 2015; Senay et al., 2015; Shuai et al., 2018; Silva et al., 

2021) or, when studied in a marine zone, cover few analyzed species or are they focused 

on specific families (e.g., Antonucci et al., 2009; Price et al., 2011, 2013; Mohadasi et al., 

2014; Ventura et al., 2017). In general, the complexity of the environment and water flow 

have influenced the fish morphological pattern (see Langerhans, 2008; Yamada et al., 

2009; Brandl and Bellwood, 2014; Brandl et al., 2015; Bejarano et al., 2017), where the 

rate of body elongation has been the main feature observed (Price et al., 2019). Studies 

establishing a relationship between fish body shape in different marine habitats, 

encompassing a large diversity of species (i.e., at the community level) and areas 

assessed, are scarce, with emphasis on the works of Farré et al. (2015, 2016), which 

analyzed the morphological pattern in different habitats in the western Mediterranean Sea 

(92 and 125 species, respectively), and Larouche et al. (2020), which in general used a 

dataset of 3322 species, comparing morphological variables (using linear morphometry) 

between reef and non-reef fish. Other important studies on fish morphological diversity 

are Caillon et al. (2018) (85 species from the North Sea), Claverie and Wainwright (2014) 

(2939 species from the Indo-Pacific reef), and Price et al. (2019) (morphological pattern 

of 6144 species of Teleosts). There are no morphological studies of such magnitude in 

the tropical western Atlantic. 
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 The tropical shelf of northeastern Brazil is highly diverse in its environments. It 

is possible to observe the heterogeneity of the environments through a complex set of 

habitats found in this region, such as sandbanks, algae banks, seagrass, and mainly coral 

reefs (Leão et al., 2016; Eduardo et al., 2018; Fontes et al., 2020). The latter stands out 

due to the variety of coral species present in the region (Leão et al., 2016) and, mainly, 

because they help compose an environment that enables a high diversity of species that 

inhabit there (Messmer et al., 2011), either for refuge, feeding or other factors. 

The fish diversity found in the East Brazil Shelf LME (Large Marine Ecosystem 

where the northeastern platform of Brazil is included) is over 890 species. Of these, 293 

are associated with coral reefs (FishBase information, Froese and Pauly, 2021). Eduardo 

et al. (2018) found 120 demersal fish species between latitudes 4°-9°S, where fish 

assemblages were mainly associated with depth and bottom habitat types assessed, whose 

species richness and diversity indices were influenced by habitat heterogeneity. 

Therefore, it is already known that ecological patterns in fish assemblages (such as 

richness, diversity, and distribution) are influenced by the habitat. However, 

morphological aspects, especially those linked to body shape at the community level, 

have not been evaluated in a habitat gradient, still less in the marine shelf of northeastern 

Brazil. 

 Geometric morphometrics plays, in this respect, a substantial role to understand 

the morphological patterns of a diverse set of species, such as those found in tropical 

marine waters. The main advantage is that the geometric information in the data is not 

lost when compared to classical morphometric techniques (i.e., linear morphometry) 

(Zelditch et al., 2004). Therefore, our main objective was to study the morphological 

pattern of a demersal fish community in a tropical marine environment (Brazil between 

4°-9°S), verifying relationships between morphology and bottom habitat types present in 

this region. Thus, geometric morphometric techniques were used to establish shape 

groups and evaluate morphology across a phylogenetic path and a taxonomic gradient. 

Furthemore, using the obtained morphospace, we sought to understand how morphology 

is related to the habitats where demersal fish species are found. 

2. MATERIALS AND METHODS 

2.1 Study area and fish sampling 

The study area of the present work corresponds to a tropical demersal marine 

environment. The continental shelf of northeastern Brazil is narrow, with an average 
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width of 40 km and an average depth of around 60 m, dominated by sandy and siliciclastic 

(inner part of the shelf) and carbonate (middle and outer part of the shelf) in its sediment 

composition (Vital, 2014). The region is influenced by the South Equatorial Current and 

is defined as a warm tropical zone, with low primary productivity waters (Heileman 

2009). Despite this, the northeastern Brazilian shelf has a high fish diversity (Eduardo et 

al., 2018), reflected in the diversity exploited by fisheries (Muller-Karger et al., 2017), 

where also several species are threatened in different degrees of exploitation and 

sustainability (Eduardo et al., 2018; Passarone et al., 2019). In this region, there is a 

diversity of habitats and highly connected marine ecosystems, especially coral reefs 

(Castro and Pires, 2001; Bittencourt et al., 2008). Furthermore, we can also find several 

Marine Protected Areas (e.g., ‘APA Costa dos Corais’, ‘APA dos Corais’, ‘APA 

Guadalupe’, ‘APA Santa Cruz’, ‘APA Ponta da Baleia/Abrolhos, and others) (Prates and 

Blanc, 2007).  

 Fish were collected in the ABRACOS (Acoustics Along the Brazilian Coast) 

surveys during the two sampling events, which occurred in August-September 2015 and 

April-May 2017, onboard the French R/V ANTEA (Bertrand, 2015, 2017), along the 

continental shelf of Northeastern Brazil (4º˗9ºS) (Fig. 1). At each sampling station (37 in 

total), individuals were captured using bottom trawls (body mesh: 40 mm, cod-end mesh: 

25 mm, and horizontal x vertical mouth dimensions: 28 x 10 m), between depths of 10 to 

60 m, and for approximately 5 minutes of trawling at each station. They were tagged and 

stored on ice for posterior analysis.  

 We used videos footages obtained by an underwater camera (model GOPRO 

HERO 3) attached to the top of the net mouth. These footages were used to classify the 

bottom habitats into three types: (i) SWCR (Sand with rocks, coralline formations, and 

sponges) - primarily sand bottom with 10% or greater distribution of biogenic rocks, 

corals, calcareous algae and sponges, (ii) Algae - substrates with 10% or greater 

distribution of any combination of numerous species of leafy red, green or brown algae, 

and (iii) Sand - coarse sediment typically found in areas exposed to currents or wave 

energy. For more details on the sampling process and habitat classification methodology 

of the ABRACOS surveys, see Eduardo et al. (2018). 
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Fig. 1 Tropical marine area (continental shelf of northeastern Brazil) studied in this work, 

with sampling stations. 

2.2 Image acquisition and processing 

In the laboratory, each individual was identified up to the species level and photographed 

separately using a digital camera (model: CANON SX520, 16 Megapixels). In this study, 

we analyzed only the bony fishes belonging to the Actinopterygii class. Each specimen 

was photographed in lateral view, with the head positioned to the left and the dorsal region 

upwards. The methodology described in Muir et al. (2012) was followed, where the 

camera lens was positioned at 90° about the fish surface, and fish orientation, lighting, 

and equipment configuration had been standardized to avoid errors and inaccuracies in 

morphometric analysis. We also used some images obtained from FishBase (Froese and 

Pauly, 2021), fish catalogs or articles (Rocha, 2004; Williams et al., 2010; Deda and 

Barbosa, 2016), and online image database (Robertson and Tassel, 2019) (Appendix S1 

in Supplementary Information 2). 

 From each species, only one image was chosen following two main criteria: adult 

individuals and fish positioned in lateral view with all fins open and visible. Each species 

was also classified into four types of caudal fin: rounded, truncated, emarginated, and 

forked. Finally, all species images were binarized into black silhouettes with a white 
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background using an image editing software. The pelvic fin was not included because 

many images could not be identified and/or many species do not exhibit this fin type. 

2.3 Data analysis    

All analyses were performed in R version 3.6.1 (R Development Core Team, 2019), and 

a flowchart of the data analysis process can be consulted in Fig. 2. We applied the 

Elliptical Fourier Analysis (EFA), using the ‘Momocs’ package version 1.3.2 

(Bonhomme et al., 2014), on the fish outline extracted in coordinates (x, y) from the 

binarized images with black silhouette to get the shape information of the individuals. 

 

Fig. 2 Flowchart of the data analysis process used in this work. 

EFA represents a parametric function in the sense that the x and y directions are 

configured separately as cumulative functions of a third variable t along the outline. The 

Fourier descriptors resulting from these functions are invariant in size, rotation, and 

position (Kuhl and Giardina, 1982; Lestrel, 2008). The parametric functions proposed by 

Kuhl and Giardina (1982) are defined in x(t) and y(t), respectively, (Equations (1) e (2)) 

as: 

𝑥(𝑡) = 𝐴0 +  ∑ 𝑎𝑛 cos 𝑛𝑡

𝑁

𝑛=1

+  ∑ 𝑏𝑛 sin 𝑛𝑡,                                       (1)

𝑁

𝑛=1

 

and 

 𝑦(𝑡) = 𝐶0 +  ∑ 𝑐𝑛 cos 𝑛𝑡

𝑁

𝑛=1

+  ∑ 𝑑𝑛 sin 𝑛𝑡,                                       (2)

𝑁

𝑛=1
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where an, bn, cn and dn are the harmonic coefficients n, A0 and C0 are constants, and N is 

the maximum number of harmonics. We used 12 harmonics in total, which retained 99% 

of the shape information of the data. The removals of size, rotation, and position effects 

were done through the normalization based on the first hamonic, as a result the first three 

coefficients of the first harmonic are transformed into a1=1 and b1=c1=0 (Crampton, 

1995). The generated Fourier coefficient matrix is used in the subsequent analyses. For 

more details of the mathematical procedures of EFA, see Lestrel (2008). 

 Principal component analysis (PCA) was applied on the Fourier coefficients 

matrix to identify and characterize the main variations in fish shapes. The number of 

principal components (PCs) retained was determined from a segmented regression 

between the components and the variation explained by each, using the 'segmented' 

package version 0.5-3.0 (Muggeo, 2008). The regression breakpoint was then used as a 

reference to determine the number of significant components and reduce the subjectivity 

of the scree plot criterion.  

 The elongation aspect index (Roisin, 2005) was calculated for each species 

separately (the higher the value the more elongated the fish body) and verified the 

relationship with the significant principal components using a simple linear regression. 

Similarly, the relationship between caudal fin-type (rounded, truncated, emarginated, or 

forked) and the significant components was verified using a boxplot, and differences were 

tested using the non-parametric Kruskal-Wallis and Dunn tests (Zar, 2010). 

Cluster analysis was applied on the Fourier coefficient matrix to determine the 

main demersal fish shape groups present in the study area. Ward’s hierarchical clustering 

method and the Euclidean distance as an index of dissimilarity were used (Johnson and 

Wichern, 2014). The morphological similarities in fish body shape were used to 

determine the main morphological groups of the species. The groups had their average 

shapes determined and ranked in descending order according to the species number 

present in each group as common and rare shapes. 

We obtained the phylogenetic tree of the analyzed fish species using the 

fishtree_phylogeny function of the package 'fishtree' version 0.3.4 (Chang et al., 2019). In 

order to compare the morphological path with the phylogenetic path, we converted the 

phylogenetic tree into a dendrogram-type object using the package 'phylogram' version 

2.1.0 (Wilkinson and Davy, 2018). Then, the two dendrograms (phylogenetic vs. 

morphological) were compared using the tanglegram function ('dendextend' package 

version 1.16.0, Galili, 2015) and calculated Baker's Gamma correlation coefficient 
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(Baker, 1974), which measures the similarity between two dendrograms, ranging from -

1 to 1, with values closer to 0 indicating that the two dendrograms are not similar. 

The estimative of morphological distance (based on Euclidean distance) used the 

Fourier coefficient matrix to test the hypothesis that taxonomically proximate individuals 

have a similar morphological pattern. It proceeded with the non-parametric Mann-

Whitney test for independent samples (Zar, 2010) within three taxonomic levels (genus, 

family, and order). 

 In the context of this study, morphospace, also called shape space, is the 

mathematical space that describes and relates the morphological configuration of the 

analyzed fish (Mitteroecker and Gunz, 2009). Thus, morphospace was used to verify the 

diversity and morphological amplitude of the species. The morphological configuration 

of each species is represented as a single point, and the space dimensionality is determined 

by the number of shape variables analyzed (i.e., the significant principal components) 

(Mitteroecker and Gunz, 2009). 

 We evaluated morphospace as a three-dimensional (3d) structure created through 

the first three principal components. Two geometric metrics were extracted from this 

structure: volume and amplitude. The volume of the 3d structure, or volume of the 

morphospace, is the morphological diversity found within the species group that 

composes the shape space. The larger the volume, the greater the phenotypic diversity 

found in the morphospace. Morphological amplitude can be interpreted as the greatest 

distance between two vertices of the 3d structure (i.e., the greatest distance between two 

species that composes the same shape space). Thus, the amplitude was used to find the 

most morphologically different species within the morphospace (i.e., the greatest 

amplitude value found within the morphospace indicates the two most different species). 

For both analyses, the input data was the significant principal component matrix. Volume 

was calculated using the 'geometry' package version 0.4.5 (Habel et al., 2019), and 

amplitude by using the largest Euclidean distance between species in the morphospace.  

The Fig. S1 (Supplementary Information 2) presents a didactic sketch showing an 

example of how morphospace was studied in the present work.  

 Volume and amplitude were compared to the species number observed at each 

sampling station using power models (𝑦 = 𝑎𝑥𝑏) to observe the behavior of the 

morphospace metrics. Morphospace (volume and amplitude) within bottom habitat types 

was evaluated in this study in three different situations of observed species abundance: 

(i) All species - where the criterion evaluated was presence or absence, and all species 
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present in the habitat type were considered in the analysis, regardless of total abundance; 

(ii) species with total abundance ≥ 25% - all species that occurred at an abundance of 25% 

or greater in that habitat type, relative to the total of that species captured in the study 

area; and (iii) species with total abundance ≥ 50% - all species that occurred at an 

abundance of 50% or greater in that habitat type, relative to the total of that species 

captured in the study area. 

 A canonical variable analysis (CVA) was applied on the significant principal 

component matrix to check the degree of morphospace separation within each bottom 

habitat type. Multivariate analysis of variance (MANOVA) was applied on the CVA 

scores to verify if there is a morphological difference between the morphospaces of the 

three bottom habitat types. Finally, the Dunn test for multiple pairwise comparisons 

(Dunn, 1964) was applied to evaluate the influence of habitat type on the shape variables 

(i.e., significant PCs). The three previous analyses (CVA, MANOVA, and Dunn test) 

were performed considering the three situations of species abundance observed (all 

species, ≥ 25% and ≥ 50%). The objective of applying the Dunn test was to answer the 

following hypothesis: the fish morphological pattern (i.e., shape variables) in a given 

habitat can be explained in part by the abundance of the species that are found in that 

habitat, assuming that the more abundant a species is in a given environment, the more 

morphologically adapted the species is to live in that habitat. A significance level of 5% 

was used in all analyses (Zar 2010). 

3. RESULTS 

We analyzed 120 species distributed in 16 orders and 45 families (Appendix S1 in 

Supplementary Information 2). The first three principal components were considered 

significant and retained for further analysis, explaining approximately 74% of the fish 

shape variation (Fig. S2 in Supplementary Information 2). PC1 (53.2% of the total 

variance) was related to the fish body elongation (Fig. 3a). The relationship between PC1 

and elongation aspect index was directly proportional (Fig. 3b). That is, fish with negative 

extreme values of this axis showed deep body shape, while species with elongated body 

pattern occupied positive extreme values. PC2 (11.8%) explained the caudal fin shape 

(Fig. 3a), as evidenced in the boxplot with the variable ‘caudal fin type’ (Fig. 3c). Species 

with rounded fins are positioned at the negative extreme of this component, while fish 

with forked fins can be found at more positive values of the PC2. Finally, PC3 (8.9%) 

explained, to a lesser extent, the shape and position of the dorsal fin, where individuals 

that have more pointed dorsal fins and positioned more posteriorly on the body were 
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concentrated in negative PC3 values. On the other hand, individuals that have pointed 

dorsal fins and positioned anteriorly on the body are at the positive end (Fig. 3a). Species 

representative of the extremes of each PC were: Pomacanthus paru (-PC1), Fistularia 

petimba (+PC1), Achirus lineatus (-PC2), Selene vomer (+PC2), Bothus lunatus (-PC3), 

and Holocanthus ciliaris (+PC3) (Fig. 3a).  

 

Fig. 3 Variation of fish body shape in the three axes of the principal components (PCs), 

and species that occupied the extreme values (negative and positive) (a). Relationship 

between PC1 scores and elongation aspect (b). Relationship between PC2 scores and 

caudal fin type. Kruskal-Wallis test indicated a significant difference in PC2 scores 

among caudal fin types and different letters indicate statistically significant difference 

(Dunn test, p<0.01) (c). 
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Our results suggest the morphological pattern of the demersal fish bodies analyzed 

could be divided into 13 main shape groups (Fig. 4a). These 13 morphological patterns 

represent the groups that are formed at a cutoff of approximately 10% of the Euclidean 

distance in the clustering dendogram. The species were grouped according to 

morphological similarity, where it is possible to observe fish with more common body 

shapes (i.e., groups with higher species number, with 23 to 12 species; the groups 9, 7, 

12, and 10) and, in a opposite side, groups of rarer body shapes with lower species number 

(2 to 5 species, the groups 1, 4, 5, and 13) (Fig. 4a). We compared the phylogenetic tree 

with the morphological clustering for 103 analyzed species (Fig. 4b). Overall, we 

observed that phylogenetic proximity does not necessarily determine morphological 

proximity (evidenced by low Baker's Gamma correlation = 0.20), with morphologically 

similar individuals (right dendrogram) represented by phylogenetically distant species 

(e.g., first and last branch of the morphological clustering, and others). However, the 

morphological distance is greater the higher the taxonomic level (Fig. 5). 

 

Fig. 4 Main shape groups of marine demersal fishes evaluated in this study, indicating 

the reconstructed average shape and species number in each group (a). Phylogenetic 

reconstruction for 103 species analyzed in this study compared with morphological 

clustering based on body shape. Baker's Gamma correlation coefficient (0.20) indicated 

a low congruence between phylogeny and body morphology (b). 
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Fig. 5 Boxplot of the relationship between Euclidean distance (i.e., morphological 

distance) and taxonomic level. Different letters indicate a significant difference between 

the Euclidean distance medians among taxonomic levels (Mann-Whitney test, p<0.05). 

Of all 37 sampling stations analyzed, 20 were classified as SWCR, four as Algae, 

12 as Sand, and one station was unclassified (Fig. 6a). Morphospace volume (×106) values 

ranged from 2 to 28,668 and morphospace amplitude (×10²) from 8 to 97, both of which 

have no measure unit because these are metrics calculated within a shape space. Volume 

and amplitude did not show a defined latitudinal spatial pattern in the study area (Figs. 

6b, c). The relationships between morphospace volume vs. species number and 

morphospace amplitude vs. species number were y=2E-06x2.8688 (r²=0.79, F=132.2, 

p<0.001) and y=0.0775x0.7304 (r²=0.70, F=81.9, p<0.001), respectively, evidencing that 

both metrics (volume and amplitude) increase the more species present in the 

morphospace (Fig. 6d).  

Morphospace volume and amplitude values were higher in the SWCR habitat (i.e., 

greater morphological diversity and greater morphological difference between two 

species found in this environment), when compared to Algae and Sand habitats (Figs. 6e 

and 7). In the SWCR habitat the volume and amplitude remained high regardless of the 

species abundance observed (Figs. 7a). However, in Algae and Sand, both metrics 

decreased the higher the species total abundance (%) in that habitat type (Figs. 7b, c). 
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Fig. 6 Sampling station classification by bottom habitat type (a). Variation of 

morphospace volume (c) and morphospace amplitude (c) at each sampling station. 

Relationship of volume and amplitude with species number composing of the 

morphospace (d). Variation of volume and amplitude of morphospace in each habitat type 

(e). 

The morphological pattern found in the habitat types changed according to the 

species total abundance (Fig. 8). At first, considering all species present in the habitat 

(independent of abundance %), no significant differences were found by MANOVA 

(Wilks' Lambda=0.978, p=0.360), as well as by the pairwise comparison results of the 

Dunn test for the three shape variables (PC1, PC2, and PC3) (All species, Fig. 8 and 

Appendix S2 in Supplementary Information 2). When considering the habitat 

morphospaces formed only by species with total abundance ≥ 25%, the MANOVA 

(Wilks' Lambda=0.899, p<0.01) indicated significant difference in morphological 

pattern. In addition, Dunn test results indicated differences for PC1 (body elongation) 

between Sand vs. Algae (p=0.002) and Sand vs. SWCR (p=0.015) (≥ 25%, Fig. 8 and 
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Appendix S2 in Supplementary Information 2). Finally, considering the situation with 

total species abundance ≥ 50%, the MANOVA (Wilks' Lambda=0.915, p<0.01) indicated 

morphological differences between the habitats, and PC1 continued to show significant 

differences in the Sand vs. Algae (p=0.007) and Sand vs. SWCR (p=0.017) comparisons 

(≥ 50%, Fig. 8 and Appendix S2 in Supplementary Information 2). Variables PC2 and 

PC3 were not different between bottom types and species abundance in the habitats 

(Appendix S2 in Supplementary Information 2). Therefore, we can conclude that there is 

a tendency to find fish with a more elongated body shape in the Sand type habitat, 

especially when we take into consideration the most abundant species in this 

environment.  

4. DISCUSSION 

Studies of morphological diversity at the fish community level are scarce. Here we 

assessed for the first time the morphological pattern of a community with 120 species of 

marine bony fish in the Atlantic Southwestern (4°-9°S). Our results are included within a 

small set of studies that used geometric morphometric methods to understand the 

morphological pattern of fish communities in different marine habitats (e.g., Farré et al., 

2015, 2016; Aguilar-Medrano and Calderon-Aguilera, 2016; Aguilar-Medrano and 

Arias-González, 2018). The 13 body morphotypes found indicated that the 120 species 

from tropical shelf of northeastern Brazil have a high shape diversity, corroborating with 

work of this magnitude for demersal fish in Mexico (Aguilar-Medrano and Calderon-

Aguilera, 2016; Aguilar-Medrano and Arias-González, 2018), tropical Indo-Pacific 

(Claverie and Wainwright, 2014), and the Mediterranean Sea (Farré et al., 2015, 2016).  

However, the presence of more common body shapes associated with many 

different species may indicate that morphological convergence occurs, i.e., many species 

exhibit the same body pattern. This convergence can be interpreted as an evolutionary 

adaptation that grants these species access to different ecological niches (morphologically 

generalist species), whether related to access to different habitats, trophic ecology, or 

behavioral origin (Webb, 1984). On the other hand, we can also observe morphological 

divergence where few species have a particular body shape, indicating a specialization in 

the body morphology that may also reflect in a niche specialization (e.g., Collar et al., 

2009; López-Fernández et al., 2012). 
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Fig. 7 Variation of morphospace volume and amplitude for the SWCR (a), Algae (b), and 

Sand (c) habitat types, in three different situations of species abundance: (i) All species - 

all species present in the habitat type were considered in the analysis, independent of total 

abundance; (ii) ≥ 25% - all species that occurred at an abundance of 25% or greater in 

that habitat type, compared to the total of that species captured in the study area; and (iii) 

≥ 50% - all species that occurred at an abundance of 50% or greater in that habitat type, 

compared to the total of that species captured in the study area. Black fish silhouettes 

represent the species with the highest morphological amplitude. 
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Fig. 8 Variation of PC1 (a), PC2 (b), and PC3 (c) on different habitat types, in three 

different situations of species abundance (All species, ≥ 25%, and ≥ 50%). Different 

letters indicate statistically significant difference (Dunn test, p<0.05). 
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We can observe in our results some groups that have specific body shapes: the 

flat-fish group (with five species of Pleuronectiformes, G4 in Fig. 4a), characterized by 

fish that have a specific swimming pattern in contact with the bottom, where compression 

and body morphology are directly linked to this behavior (Fox et al., 2018); the trumpet-

fish group (with four species of Syngnathiformes, G13 in Fig. 4a), that have a very 

elongated body shape, which may be intrinsically related to feeding and hunting tactics, 

such as the camouflage behavior in the vertical position during prey searching (Auster, 

2008), in addition to the elongated head and jaw morphology (Tegge et al., 2020); and 

finally, we can also observe the butterfly-fish group (with two species of Chaetodontidae, 

G5 in Fig. 4a), which are fish that have a body shape directly linked to foraging behavior, 

where the head and jaw morphology (Ferry-Graham et al., 2001) are very much associated 

with searching for sessile preys (Brandl and Bellwood, 2013, 2014), here the deep shape 

favors a reduction of vertical rotation around its own body, providing more precise 

maneuvers (Webb, 1984). 

The morphological clustering showed low congruence with the phylogenetic tree, 

indicating that our morphological approach cannot be used to observe phylogenetic 

proximities for the species studied. Indeed, the use of morphological data in phylogenetic 

mapping is not recommended (Wiens, 2004), where one of the main discussions is about 

morphological data behaving as homoplastic characters. In this study, we interpret body 

shape as a homoplastic character, where many species have a similar body shape, but did 

not necessarily evolve from an immediate common ancestor (Wiley and Lieberman, 

2011). This becomes evident when we observe groups that are morphologically similar 

but phylogenetically distant: (i) elongate body shape fish - represented by trumpet-fish 

(Syngnathiformes order), barracuda (Sphyraenidae family) and lizard-fish (Aulopiformes 

order); and (ii) deep body shape fish - represented by flat-fish (Pleuronectiformes order), 

and angel-fish and butterfly-fish (Acanthuriformes order). However, some studies use a 

large matrix of morphological variables to map and fill phylogenetic gaps in some fish 

groups, in these cases a series of quantitative and qualitative variables are evaluated 

together (e.g., Dillman et al., 2016; Girard et al., 2020). As expected, morphological 

distance increased the higher the taxonomic level between species; similar results were 

found for a fish community from the North Sea (Caillon et al., 2018). 

Body elongation has been the most highlighted trait in morphological studies of 

fish communities (e.g., Claverie and Wainwright, 2014; Caillon et al., 2018; Price et al., 

2019), explaining more than half of the morphological variation in the 120 species 
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analyzed here. One of the most discussed functional traits with body elongation rate is 

swimming performance. Fish with a more elongated body shape have been attributed to 

individuals having greater acceleration during swimming and/or cruising-type swimming 

(e.g., tunas) (Webb, 1984). On the other hand, fish with deeper bodies are more 

specialized in maneuvering (e.g., butterfly-fish) (Webb, 1984). Another striking feature 

in our results was the caudal fin shape, which has been attributed to the fish's propulsion 

in the water column (Lauder and Drucker, 2004). The complexity of fin shapes (caudal 

fin and other fin types) act in conjunction with a variety of other factors to generate 

hydrodynamic movements during swimming (Blake, 2004; Lauder and Drucker, 2004), 

but the morphological pattern can also reveal how the fish are adapted to live in certain 

habitats (see Imre et al., 2002; Langerhans, 2008; Yamada et al., 2009). 

Using morphospace as a 3d structure allowed us to understand the fish 

morphological pattern in the different habitat types analyzed. The heterogeneous habitat 

SWCR showed the highest diversity and morphological amplitude for the species. Indeed, 

structured coral reef environments are already widely studied with respect to high fish 

diversity (e.g., Harmelin-Vivien, 2002; Aguilar-Perera and Appeldoorn, 2008; Eduardo 

et al., 2018), and the complexity of these habitats is one of the factors favoring high 

ecological diversity (Messmer et al., 2011). Complex habitats, therefore, favor high 

morphological diversity (as we found in our study for SWCR) and, consequently, 

functional and ecological niche diversity (Willis et al., 2005). However, Halpern and 

Floeter (2008) point out that increased functions in fish communities are more associated 

with species diversity in different functional groups (i.e., different species acting in 

different functions within the environment) than species richness in the community. 

SWCR habitats favor a set of conditions that provide a high diversity of ecological niches 

with respect to the refuge (Johansen et al. 2008), social interactions (Gil and Hein, 2017), 

and reproductive aspects (Claydon, 2004), among others. The complexity of coral reefs 

also reduces predation and competition among fish species (Almany, 2004). All of this 

enables the coexistence of diverse species due to decreased overlapping of ecological 

niches (increasing niche partitioning, Hugueny, 1990), which also explains the 

coexistence of morphologically different fish adapted to live in SWCR habitat (see 

volume and amplitude greater for SWCR in Figs. 6e and 7). Furthermore, coral reefs 

promote the evolution of morphological diversity in some fish groups, such as 

Haemulidae (Price et al., 2013) and Labridae (Price et al., 2011). 
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Conversely, sand habitats showed the lowest diversity and morphological 

amplitude, which leads us to understand that fish morphology in this environment is more 

specialized when compared to the morphology in SWCR (more diverse and disperse). 

Open environments, such as sandbanks, have a much higher water flow than 

environments protected by structures, such as rocks, sponges, and corals (Johansen, 

2014). Species living in these habitats need to break through the physical barrier present 

there (higher water velocity), and one of the most discussed morphological adaptations is 

body elongation (e.g., Langerhans, 2008; Foster et al., 2015; Bejarano et al., 2017). For 

instance, freshwater fish exhibit more elongated shapes in higher water currents (see e.g., 

Langerhans et al., 2003; Langerhans, 2008; Franssen, 2011; Foster et al., 2015). In 

turbulent marine environments, which have a higher wave exposure, a morphological 

filter acts on the fish body shape, favoring species with fusiform bodies, which have a 

design that minimizes the water drag, making these individuals better able to access the 

resources around them, compared to the deep body shape that has disadvantages in this 

type of habitat (Bejarano et al., 2017). 

The species abundance in the habitat helped us to understand two important 

conclusions: (i) initially, we could identify high morphological connectivity among the 

three habitats, observing the same diversity and morphological amplitude for all species 

present in each habitat (see All species in Fig. 7), making it clear that these habitats are 

highly connected in the study area; (ii) by contrast, when we observed the morphospace 

composed of the most abundant species, we concluded that in the Sand bottom the general 

morphology is more specialized, with lower volume and morphological amplitude, 

besides the body pattern becoming more elongated (see Fig. 8), reinforcing that an 

exposed habitat favors species that have a morphological design adapted to those 

conditions. 

The Algae type habitat showed intermediate morphospace values. Nevertheless, 

as we had only four sampling stations characterized as this type of bottom, we suggest 

that future work should further investigate these habitats, since they are important for 

ecosystem functioning, especially among lower trophic levels such as herbivores (Kopp 

et al., 2010). Other traits, which were not evaluated here, are also related to fish 

morphology, such as ecological factors (e.g., Costa and Cataudella, 2006; Price et al., 

2015) and environmental physicochemical factors (e.g., Georgakopoulou et al., 2007; 

Crispo and Chapman, 2010). Thus, the phenotype that fish present is the result of a set of 
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factors that act in greater or lesser intensity on the morphological pattern of these 

individuals. 

5. CONCLUSIONS  

Here, we present for the first time a morphological characterization of the demersal fish 

community from the northeast Brazilian shelf. The good use of geometric morphometry, 

accessing shape using Fourier functions, allowed us to conclude that demersal fish have 

a high morphological diversity. The SWCR habitat most likely has the highest 

functionality, as it has the highest morphological diversity and dispersion. In the Sand 

habitat, there is a morphological specialization focused on body elongation, related to 

access to the habitat due to a design more adapted to this environment. We recommend 

that this work can be expanded to other areas, because morphological comprehension is 

fundamental to understanding the ecosystem dynamics, especially in coral reefs, which 

have been highly impacted by anthropic pressures (Andrello et al., 2022). 
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SUPPLEMENTARY INFORMATION 2 

Appendix S1. Taxonomy and morphological characterization of 120 fish species on the continental shelf of Northeastern Brazil (4º˗9ºS).  Total 

abundance (%) of species in three bottom habitat types: sand, algae and SWCR (Sand with rocks, coralline formations, and sponges). Caudal fin 

type and body elongation aspect. Scores of significant principal components explaining the morphological variation of species (PC1, PC2, and 

PC3), and images source: (1) ABRACOS surveys, (2) Froese and Pauly (2021), (3) Deda and Barbosa (2016), (4) Robertson and Tassel (2019), 

(5) Williams et al. (2010), (6) Rocha (2004). 

Order Family Species Code % Sand % Algae % SWCR Caudal 

type 

Elongation 

aspect 
PC1 PC2 PC3 Images 

source 

Acanthuriformes Acanthuridae Acanthurus bahianus Castelnau, 1855 aca.bah 11.46 28.66 59.87 Truncated 0.4408 -0.1540 0.0770 0.0394 1 

  Acanthurus chirurgus (Bloch 1787) aca.chi 6.16 6.40 87.44 Truncated 0.3834 -0.1939 0.0432 0.0426 1 

  Acanthurus coeruleus Bloch & Schneider, 1801 aca.coe 0.00 0.00 100.00 Emarginated 0.3380 -0.2526 0.1459 0.0383 1 

 Chaetodontidae Chaetodon ocellatus Bloch, 1787 cha.oce 7.64 5.73 86.62 Truncated 0.2484 -0.3349 -0.0848 -0.0436 1 

  Chaetodon striatus Linnaeus, 1758 cha.str 1.61 0.23 98.17 Truncated 0.2119 -0.3727 -0.1086 -0.0724 1 

 Ephippidae Chaetodipterus faber (Broussonet, 1782) cha.fab 0.00 0.00 100.00 Emarginated 0.2699 -0.3903 0.0495 0.1715 2 

 Pomacanthidae Holacanthus ciliaris (Linnaeus, 1758) hol.cil 0.00 46.15 53.85 Truncated 0.4549 -0.4088 -0.1061 0.3277 1 

  Holacanthus tricolor (Bloch, 1795) hol.tri 0.00 0.00 100.00 Truncated 0.4671 -0.2475 -0.0993 0.1371 2 

  Pomacanthus paru (Bloch, 1787) pom.par 3.92 2.94 93.14 Rounded 0.2771 -0.5803 0.1120 0.0784 1 

Albuliformes Albulidae Albula vulpes (Linnaeus, 1758) alb.vul 50.00 0.00 50.00 Forked 0.7234 0.1833 0.0347 -0.0071 1 

Aulopiformes Synodontidae Synodus foetens (Linnaeus, 1766) syn.foe 0.00 0.00 100.00 Emarginated 0.7328 0.2502 -0.0004 -0.0231 1 

  Synodus intermedius (Spix & Agassiz, 1829) syn.int 0.00 0.00 100.00 Emarginated 0.7417 0.2257 -0.0233 -0.0281 4 

  Synodus synodus (Linnaeus, 1758) syn.syn 0.00 0.00 100.00 Emarginated 0.7617 0.2240 -0.0277 -0.0070 4 
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  Trachinocephalus myops (Forster, 1801) tra.myo 12.90 0.00 87.10 Emarginated 0.6782 0.1555 0.0375 -0.0319 1 

Carangiformes Carangidae Caranx crysos (Mitchill, 1815) car.cry 50.00 50.00 0.00 Forked 0.5939 0.0872 0.0752 -0.0310 1 

  Caranx latus Agassiz, 1831 car.lat 0.00 0.00 100.00 Forked 0.5881 0.0537 0.0886 -0.0336 3 

  Chloroscombrus chrysurus (Linnaeus, 1766) chl.chr 1.56 0.00 98.44 Forked 0.5053 0.0216 0.0948 -0.0574 1 

  Decapterus punctatus (Cuvier, 1829) dec.pun 100.00 0.00 0.00 Forked 0.6483 0.1444 -0.0017 -0.0428 1 

  Selar crumenophthalmus (Bloch, 1793) sel.cru 11.54 0.00 88.46 Forked 0.6065 0.0881 0.0427 -0.0746 1 

  Selene brownii (Cuvier, 1816) sel.bro 47.62 0.00 52.38 Forked 0.3319 -0.1529 0.1088 -0.0513 1 

  Selene vomer (Linnaeus, 1758) sel.vom 0.00 0.00 100.00 Forked 0.3660 -0.2275 0.1617 -0.0031 1 

  Uraspis helvola (Forster, 1801) ura.hel 0.00 0.00 100.00 Forked 0.4951 0.0087 0.0780 -0.0066 2 

 Echeneidae Echeneis naucrates Linnaeus, 1758 ech.nau 25.00 0.00 75.00 Emarginated 0.7793 0.2641 -0.0533 0.0108 1 

Clupeiformes Clupeidae Opisthonema oglinum (Lesueur, 1818) opi.ogl 0.14 0.00 99.86 Forked 0.6246 0.0977 0.1116 -0.0497 1 

 Engraulidae Lycengraulis grossidens (Spix & Agassiz, 1829) lyc.gro 0.00 0.00 100.00 Forked 0.6105 0.1163 0.0482 -0.0162 4 

 Pristigasteridae Chirocentrodon bleekerianus (Poey, 1867) chi.ble 0.00 0.00 100.00 Forked 0.6347 0.1336 0.0181 -0.0150 2 

Dactylopteriformes Dactylopteridae Dactylopterus volitans (Linnaeus, 1758) dac.vol 20.59 2.94 76.47 Emarginated 0.6510 0.1137 -0.0227 0.0310 1 

Elopiformes Elopidae Elops saurus Linnaeus, 1766 elo.sau 100.00 0.00 0.00 Forked 0.7399 0.2076 0.0521 0.0273 1 

Holocentriformes Holocentridae Holocentrus adscensionis (Osbeck, 1765) hol.ads 2.64 80.76 16.60 Forked 0.5760 -0.0272 0.1502 0.1020 1 

  Myripristis jacobus Cuvier, 1829 myr.jac 0.00 0.00 100.00 Forked 0.5261 -0.0684 0.0977 0.0418 5 

Kurtiformes Apogonidae Apogon binotatus (Poey, 1867) apo.bin 0.00 0.00 100.00 Emarginated 0.4906 -0.0217 0.0205 0.0294 2 

  Astrapogon puncticulatus (Poey, 1867) ast.pun 0.00 0.00 100.00 Emarginated 0.5255 -0.0535 0.0460 -0.0103 2 

  Phaeoptyx pigmentaria (Poey, 1860) pha.pig 0.00 0.00 100.00 Emarginated 0.5912 0.0256 0.0525 0.0249 2 

Lophiiformes Antennariidae Antennarius multiocellatus (Valenciennes, 1837) ant.mul 0.00 0.00 100.00 Rounded 0.4934 -0.1232 -0.0827 0.0316 2 

 Ogcocephaliidae Ogcocephalus vespertilio (Linnaeus, 1758) ogc.ves 50.00 0.00 50.00 Truncated 0.7387 0.1871 -0.0612 0.0249 2 
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Mulliformes Mullidae Mulloidichthys martinicus (Cuvier, 1829) mul.mar 0.00 0.00 100.00 Forked 0.6436 0.1053 0.0941 -0.0331 1 

  Pseudupeneus maculatus (Bloch, 1793) pse.mac 56.45 3.13 40.41 Forked 0.5774 0.0711 0.0617 -0.0726 1 

  Upeneus parvus Poey, 1852 upe.par 0.00 0.00 100.00 Forked 0.6358 0.1061 0.0740 -0.0160 2 

Perciformes Gerreidae Diapterus auratus Ranzani, 1842 dia.aur 0.00 0.00 0.00 Forked 0.4207 -0.0534 0.1444 -0.0715 2 

  Diapterus rhombeus (Cuvier, 1829) dia.rho 0.00 0.00 100.00 Forked 0.3881 -0.0778 0.1545 -0.0890 2 

  Eucinostomus argenteus Baird & Girard, 1855 euc.arg 85.17 0.10 14.73 Forked 0.5398 0.0240 0.1163 -0.0388 1 

  Eucinostomus gula (Quoy & Gaimard, 1824) euc.gul 1.03 0.00 98.97 Forked 0.5445 0.0273 0.0717 -0.0541 1 

  Ulaema lefroyi (Goode, 1874) ula.lef 0.07 0.00 99.93 Forked 0.5503 0.0482 0.0847 -0.0295 1 

 Haemulidae Anisotremus virginicus (Linnaeus, 1758) ani.vir 0.00 37.50 62.50 Forked 0.4692 -0.0681 0.0831 -0.0756 2 

  Conodon nobilis (Linnaeus, 1758) con.nob 0.00 0.00 100.00 Truncated 0.5315 -0.0066 -0.0132 -0.0387 2 

  Haemulon aurolineatum Cuvier, 1830 hae.aur 32.60 0.00 67.40 Forked 0.5583 0.0276 0.0316 -0.0676 1 

  Haemulon melanurum (Linnaeus, 1758) hae.mel 0.00 0.00 100.00 Forked 0.5689 0.0033 0.0136 -0.0446 1 

  Haemulon parra (Desmarest, 1823) hae.par 0.00 0.00 100.00 Forked 0.5587 -0.0082 0.0048 -0.0282 1 

  Haemulon plumierii (Lacepède, 1801) hae.plu 34.15 6.74 59.11 Forked 0.5164 -0.0343 0.0297 -0.0165 1 

  Haemulon squamipinna Rocha & Rosa, 1999 hae.squ 0.16 0.00 99.84 Forked 0.5211 -0.0071 0.0211 -0.0452 1 

  Haemulon steindachneri (Jordan & Gilbert, 1882) hae.ste 33.80 0.00 66.20 Forked 0.5512 0.0096 -0.0136 -0.0471 1 

  Haemulopsis corvinaeformis (Steindachner, 1868) hae.cor 0.00 0.00 100.00 Forked 0.5891 0.0238 -0.0284 -0.0410 1 

  Orthopristis ruber (Cuvier, 1830) ort.rub 94.90 0.00 5.10 Forked 0.6043 0.0226 -0.0081 -0.0266 1 

 Labridae Halichoeres poeyi (Steindachner, 1867) hal.poe 0.00 0.00 100.00 Truncated 0.6783 0.0822 -0.0524 -0.0285 2 

  Halichoeres dimidiatus (Agassiz, 1831) hal.dim 0.00 33.33 66.67 Truncated 0.6712 0.0677 -0.0648 -0.0420 6 

 Lutjanidae Lutjanus analis (Cuvier, 1828) lut.ana 0.00 0.00 100.00 Emarginated 0.5517 -0.0323 0.0128 0.0316 1 

  Lutjanus synagris (Linnaeus, 1758) lut.syn 36.18 27.80 36.01 Emarginated 0.5768 -0.0094 0.0198 0.0351 1 
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  Ocyurus chrysurus (Bloch, 1791) ocy.chr 72.73 6.82 20.45 Forked 0.6085 0.0680 0.1092 -0.0032 1 

 Malacanthidae Malacanthus plumieri (Bloch, 1786) mal.plu 0.00 0.00 100.00 Emarginated 0.7589 0.1581 -0.0178 0.0099 2 

 Microdesmidae Ptereleotris randalli Gasparini, Rocha & Floeter, 2001 pte.ran 0.00 0.00 100.00 Rounded 0.7424 0.1398 -0.0848 0.0345 2 

 Polynemidae Polydactylus virginicus (Linnaeus, 1758) pol.vir 0.00 0.00 100.00 Forked 0.6066 0.0443 0.1139 -0.0344 3 

 Pomacentridae Stegastes pictus (Castelnau, 1855) ste.pic 0.00 0.00 100.00 Forked 0.4146 -0.1577 -0.0935 0.0100 2 

  Stegastes uenfi Novelli, Nunan & Lima, 2000 ste.uen 0.00 0.00 100.00 Forked 0.5442 -0.0877 0.1116 0.0904 2 

 Priacanthidae Heteropriacanthus cruentatus (Lacepède, 1801) het.cru 0.00 0.00 100.00 Truncated 0.5448 -0.0647 -0.0210 0.0581 1 

  Priacanthus arenatus Cuvier, 1829 pri.are 0.00 0.00 100.00 Truncated 0.5942 -0.0049 -0.0284 0.0280 2 

 Scaridae Cryptotomus roseus Cope, 1871 cry.ros 0.00 0.00 100.00 Truncated 0.7161 0.1022 -0.0719 0.0711 2 

  Sparisoma axillare (Steindachner, 1878) spa.axi 1.52 65.15 33.33 Truncated 0.5516 -0.0224 -0.0137 -0.0477 1 

  Sparisoma frondosum (Agassiz, 1831) spa.fro 8.82 0.00 91.18 Emarginated 0.6005 -0.0065 -0.0184 0.0196 2 

  Sparisoma radians (Valenciennes, 1840) spa.rad 0.00 0.00 100.00 Truncated 0.6032 0.0125 -0.0324 -0.0550 4 

 Sciaenidae Odontoscion dentex (Cuvier, 1830) odo.den 0.00 0.00 100.00 Truncated 0.5402 0.0127 -0.0570 -0.0179 1 

  Pareques acuminatus (Bloch & Schneider, 1801) par.acu 75.00 5.00 20.00 Truncated 0.5564 -0.0399 -0.0911 -0.0563 2 

 Scorpaenidae Scorpaena bergii Evermann & Marsh, 1900 sco.ber 0.00 0.00 100.00 Rounded 0.5360 -0.0491 -0.0728 -0.0008 4 

  Scorpaena brasiliensis Cuvier, 1829 sco.brs 0.00 0.00 100.00 Truncated 0.6112 0.0009 -0.0326 0.0332 4 

  Scorpaena inermis Cuvier, 1829 sco.ine 0.00 0.00 100.00 Truncated 0.5718 -0.0044 -0.0451 0.0196 4 

  Scorpaena isthmensis (Meek & Hildebrand, 1928) sco.ist 0.00 0.00 100.00 Truncated 0.5975 0.0083 -0.0334 0.0323 4 

  Scorpaena plumieri Bloch, 1789 sco.plu 0.00 0.00 100.00 Truncated 0.5715 -0.0147 -0.0297 0.0384 1 

 Serranidae Alphestes afer (Bloch, 1793) alp.afe 0.60 0.40 99.01 Rounded 0.6197 0.0168 -0.1010 -0.0441 2 

  Cephalopholis fulva (Linnaeus, 1758) cep.ful 0.00 3.33 96.67 Rounded 0.6529 0.0071 -0.0606 0.0136 1 

  Diplectrum formosum (Linnaeus, 1766) dip.for 69.57 0.00 30.43 Emarginated 0.6550 0.0646 0.0125 0.0600 1 
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  Mycteroperca bonaci (Poey, 1860) myc.bon 0.00 0.00 100.00 Truncated 0.6857 0.0864 -0.0308 0.0233 3 

  Paranthias furcifer (Valenciennes, 1828) par.fur 0.00 0.00 100.00 Forked 0.6482 0.0682 0.1093 0.0193 2 

  Rypticus bistrispinus (Mitchill, 1818) ryp.bis 0.00 0.00 100.00 Rounded 0.6815 0.0653 -0.1013 0.0001 4 

 Sparidae Calamus calamus (Valenciennes, 1830) cal.cal 23.94 1.41 74.65 Forked 0.5406 -0.0260 0.0509 -0.0494 1 

  Calamus penna (Valenciennes, 1830) cal.pnn 0.00 100.00 0.00 Forked 0.5448 -0.0211 0.0891 -0.0250 1 

  Calamus pennatula Guichenot, 1868 cal.pen 0.00 3.13 96.88 Forked 0.5666 -0.0082 0.0456 -0.0039 1 

 Sphyraenidae Sphyraena barracuda (Edwards, 1771) sph.bar 100.00 0.00 0.00 Emarginated 0.7489 0.2001 0.0083 0.0717 1 

  Sphyraena guachancho Cuvier, 1829 sph.gua 93.75 0.00 6.25 Forked 0.7696 0.2171 -0.0002 0.0492 1 

 Triglidae Prionotus punctatus (Bloch, 1793) pri.pun 5.26 5.26 89.47 Truncated 0.6568 0.0986 -0.0230 -0.0448 1 

Pleuronectiformes Achiridae Achirus achirus (Linnaeus, 1758) ach.ach 0.00 0.00 100.00 Rounded 0.3638 -0.3068 -0.0912 -0.1030 1 

  Achirus lineatus (Linnaeus, 1758) ach.lin 0.00 0.00 100.00 Rounded 0.2660 -0.3245 -0.1403 -0.1143 1 

 Bothidae Bothus lunatus (Linnaeus, 1758) bot.lun 0.00 0.00 100.00 Rounded 0.4006 -0.1930 -0.1361 -0.1183 2 

  Bothus ocellatus (Agassiz, 1831) bot.oce 1.81 0.00 98.19 Rounded 0.4021 -0.1871 -0.1224 -0.1056 1 

  Bothus robinsi Topp & Hoff, 1972 bot.rob 0.00 0.00 100.00 Rounded 0.3496 -0.2231 -0.1249 -0.0993 2 

 Paralichthyidae Cyclopsetta fimbriata (Goode & Bean, 1885) cyc.fim 0.00 0.00 100.00 Rounded 0.4944 -0.1076 -0.1130 -0.0732 1 

  Syacium papillosum (Linnaeus, 1758) sya.pap 12.50 18.75 68.75 Rounded 0.5282 -0.0724 -0.0844 -0.0709 1 

  Syacium micrurum Ranzani, 1842 sya.mic 0.42 0.00 99.58 Rounded 0.5782 -0.0254 -0.0753 -0.0682 1 

Siluriformes Ariidae Bagre marinus (Mitchill, 1815) bag.mar 96.67 0.00 3.33 Forked 0.6378 0.1132 0.0831 -0.0577 1 

Syngnathiformes Aulostomidae Aulostomus maculatus Valenciennes, 1841 aul.mac 0.00 2.94 97.06 Rounded 0.8266 0.3042 -0.0770 0.0390 1 

  Aulostomus strigosus Wheeler, 1955 aul.str 0.00 0.00 100.00 Rounded 0.8249 0.3024 -0.0782 0.0450 2 

 Fistulariidae Fistularia petimba Lacepède, 1803 fis.pet 0.79 10.32 88.89 Emarginated 0.9221 0.3702 -0.0752 0.0419 1 

  Fistularia tabacaria Linnaeus, 1758 fis.tab 0.91 0.46 98.63 Emarginated 0.9010 0.3615 -0.0695 0.0391 1 
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Tetraodontiformes Balistidae Balistes capriscus Gmelin, 1789 bal.cap 75.00 25.00 0.00 Emarginated 0.4451 -0.1558 0.0503 -0.0274 2 

  Balistes vetula Linnaeus, 1758 bal.vet 0.00 33.33 66.67 Emarginated 0.3546 -0.2003 0.0983 -0.0357 2 

  Xanthichthys ringens (Linnaeus, 1758) xan.rin 0.00 0.00 100.00 Emarginated 0.4247 -0.1256 -0.0416 -0.0566 5 

 Diodontidae Chilomycterus spinosus (Linnaeus, 1758) chi.spi 20.00 20.00 60.00 Rounded 0.6738 0.0474 -0.0551 0.0747 1 

  Diodon holocanthus Linnaeus, 1758 dio.hol 5.56 24.38 70.06 Rounded 0.6413 0.0344 -0.1015 0.0909 1 

 Monacanthidae Aluterus heudelotii Hollard, 1855 alu.heu 0.00 0.00 100.00 Truncated 0.6103 0.0454 -0.0555 -0.0282 2 

  Aluterus monoceros (Linnaeus, 1758) alu.mon 80.00 0.00 20.00 Truncated 0.6201 0.0632 -0.0580 -0.0174 2 

  Aluterus scriptus (Osbeck, 1795) alu.scr 20.00 0.00 80.00 Truncated 0.6748 0.0925 -0.0428 -0.0174 2 

  Cantherhines macrocerus (Hollard, 1853) can.mac 4.17 41.67 54.17 Rounded 0.4575 -0.1105 -0.0822 -0.0177 1 

  Cantherhines pullus (Ranzani, 1842) can.pul 5.56 55.56 38.89 Rounded 0.3955 -0.1696 -0.0610 -0.0164 1 

  Monacanthus ciliatus (Mitchill, 1818) mon.cil 0.00 0.00 100.00 Truncated 0.3720 -0.1502 -0.0571 -0.0676 2 

  Stephanolepis hispidus (Linnaeus, 1766) ste.his 5.45 0.25 94.30 Truncated 0.4776 -0.1463 0.0823 0.1046 1 

 Ostraciidae Acanthostracion polygonius Poey, 1876 aca.pol 3.39 3.31 93.30 Truncated 0.6667 0.0493 -0.0479 0.0651 1 

  Acanthostracion quadricornis (Linnaeus, 1758) aca.qua 25.27 8.19 66.55 Truncated 0.6974 0.1002 0.0236 0.0529 1 

  Lactophrys trigonus (Linnaeus, 1758) lac.tri 20.63 31.75 47.62 Truncated 0.6515 0.0694 0.0048 0.1014 1 

 Tetraodontidae Canthigaster figueiredoi Moura & Castro, 2002 can.fig 0.00 0.00 100.00 Truncated 0.6351 0.0220 0.0224 0.1261 2 

  Sphoeroides dorsalis Longley, 1934 sph.dor 0.00 100.00 0.00 Truncated 0.6812 0.1099 -0.0155 0.0928 1 

  Sphoeroides spengleri (Bloch, 1785) sph.spe 0.06 0.00 99.94 Truncated 0.7192 0.1424 -0.0389 0.0999 1 

  Sphoeroides testudineus (Linnaeus, 1758) sph.tes 0.00 0.00 100.00 Truncated 0.6722 0.1065 -0.0223 0.1072 1 
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Appendix S2. Results of the Dunn test for multiple pairwise comparisons of shape 

variables (PC1, PC2, and PC3) between different habitat types and species abundance in 

habitat (All species, ≥ 25%, and ≥ 50%). 

All species present in habitat 

Shape variable Comparison Test statistic (z-value) p-value 

PC1 Sand x Algae 1.67 0.954 

PC1 Sand x SWCR 1.14 0.254 

PC1 Algae x SWCR 0.87 0.386 

PC2 Sand x Algae 0.47 0.637 

PC2 Sand x SWCR 0.79 0.430 

PC2 Algae x SWCR 0.16 0.869 

PC3 Sand x Algae 1.10 0.810 

PC3 Sand x SWCR 0.37 0.810 

PC3 Algae x SWCR 0.91 0.810 

Species with abundance ≥ 25% 

Shape variable Comparison Test statistic (z-value) p-value 

PC1 Sand x Algae 3.01 0.002 

PC1 Sand x SWCR 2.42 0.015 

PC1 Algae x SWCR 1.60 0.111 

PC2 Sand x Algae 0.28 0.778 

PC2 Sand x SWCR 1.97 0.584 

PC2 Algae x SWCR 1.31 0.191 

PC3 Sand x Algae 0.89 0.370 

PC3 Sand x SWCR 0.53 0.596 

PC3 Algae x SWCR 0.63 0.525 

Species with abundance ≥ 50% 

Shape variable Comparison Test statistic (z-value) p-value 

PC1 Sand x Algae 2.69 0.007 

PC1 Sand x SWCR 2.75 0.017 

PC1 Algae x SWCR 0.27 0.784 

PC2 Sand x Algae 0.25 0.797 

PC2 Sand x SWCR 1.72 0.085 

PC2 Algae x SWCR 1.40 0.163 

PC3 Sand x Algae 0.59 0.554 

PC3 Sand x SWCR 0.36 0.716 

PC3 Algae x SWCR 0.41 0.659 
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Fig. S1 Didactic sketch of the morphospace concept used in this study. n = species 

number present in the morphospace. 

 

Fig. S2 Variance explained by the first 10 principal components (PC) (a), and scree plot 

of the segmented regression indicating the first 3 significant PCs: PC1 (53.2%), PC2 

(11.8%), and PC3 (8.9%) (b). 
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FINAL CONCLUSIONS 

The geometric morphometric techniques used in our study proved to be very efficient for 

understanding ecological aspects of fish at the community level. The use of landmarks is 

more limited due to the lack of homology in a very diverse set of fish, as in our case. 

Contour analysis using Elliptic Fourier Analysis is more suitable for observing 

morphological variability at a community level of fish, as the lack of homology is ignored 

in this situation. However, both techniques have proven to be very efficient in 

understanding ecological phenomena linked to fish morphology. 

 Regarding trophic ecology, our results indicated that fish with more elongated 

body shapes occupied higher trophic levels (TL), while those with a deep shape had lower 

TL. The shape of the base of the dorsal and anal fins also contributed to explaining the 

TL. Top predators were characterised by narrow fin bases while herbivores and 

omnivorous presented longer fins related. Between these extremes, the intermediate 

trophic category (low predator) shows morphological divergence as a function of TL. 

From a broader perspective, the geometric morphometric and regression analyses allowed 

us to infer more precisely the contribution of the morphological aspects of the fish body 

in their trophic ecology. Body elongation and fin characteristics were the main 

explanatory variables for fish TL. Combined with maximum fish size (Lmax), they 

explained 46% of the TL variability and can be considered an excellent proxy to represent 

the trophic pattern of fish species. 

 Morphological differences linked to habitat access indicated that the SWCR 

habitat showed the greatest values of diversity and morphological amplitude. In addition, 

we can observe that for the Sand habitat there is a greater morphological similarity, with 

a greater abundance of species with elongated body patterns in these environments, most 

likely associated with better morphological adaptations to live in open habitats with 

higher water flow. We found 13 main shape groups, evidencing the great morphological 

diversity. The morphological clustering showed low congruence with the phylogenetic 

tree, indicating that our morphological approach cannot be used to observe phylogenetic 

proximities. Fish morphology is, therefore, a key factor in the ecological study of 

communities, especially in trophic ecology and habitat access. We recommend that this 

work can be expanded to other areas, because morphological comprehension is 

fundamental to understanding the ecosystem dynamics. 
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APPENDIX A 

A1. GENERALIZED PROCRUSTES ANALYSIS 

One way to get geometric information about objects is through landmarks. Landmarks 

are points with coordinates in two or three dimensions, which identify the same 

anatomical points in all sample individuals. Obtaining these points is usually done 

through digitized images or scans, and there are some criteria for selecting landmarks, 

such as: (i) homology (the same points should appear in all individuals in the same 

locations), (ii) coverage (the points should cover most of the shape of the individual), (iii) 

repeatability (the points should be found in all individuals with a high level of 

confidence), (iv) consistency in relative position (there should be the same points in the 

same position of the individuals in all the images analyzed), and, (v) coplanarity (the 

points should be in the same plane, considering that an image is all in one plane and the 

effect of depth is discarded) (Zelditch et al., 2004; Aguirre & Prado, 2018).  

After obtaining the landmarks the mathematical and statistical procedure that is 

used was proposed by Gower (1975), called Generalized Procrustes Analysis (GPA). The 

GPA is a procedure that translates all individuals to the same origin using a unit centroid 

scale, through a least-squares criterion, making all the coordinates of the corresponding 

points align as closely as possible (Rohlf & Slice, 1990, Zelditch et al., 2004). The matrix 

of Procrustes shape variables resulting from this analysis, which represents the shape of 

each specimen, is invariant to size, position and rotation effects (Zelditch et al., 2004).  

A1.1 GPA's mathematical procedures 

Consider a random sample of available landmark configuration matrix Χ1,..., Xn, and we 

want to estimate the mean shape of the sample. A practical approach is to use Generalized 

Procrustes Analysis for this purpose. The GPA method involves removing size, position 

and rotation effects from the relative configurations of the objects relative to each other 

in order to minimize a total sum of squares. The procedures below are described in Dryen 

& Mardia (2016), for more mathematical details see the previously cited reference: 

Removing position effect: we center the landmarks settings to remove the 

position: 

𝑋𝑖
𝑃 = 𝐶𝑋𝑖 , 𝑖 = 1, … , 𝑛 
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where 𝑋𝑖
𝑃 is the resulting matrix without position effect, and C is the centring 

matrix, defined as: 

𝐶 =  𝐼𝑘 −
1

𝑘
1𝑘1𝑘

𝑇 

where k is number of landmarks, 𝐼𝑘 is the k × k identity matrix (diagonal matrix 

with ones on the diagonal), and 1k is the k × 1 vector of ones. 

Removing rotation effect: For the ith landmark configuration: 

�̅�(𝑖) =  
1

𝑛 − 1
∑ 𝑋𝑗

𝑃

𝑗≠𝑖

, 

the new 𝑋𝑖
𝑃 is taken to be the ordinary Procrustes registration, involving only 

rotation, of the old 𝑋𝑖
𝑃onto �̅�(𝑖). The n landmarks configurations are rotate in turn. 

This process is repeated until the sum of Procrustes squares can no longer be 

reduced.  

Removing size effect: Let ф be the n x n correlation matrix of the vec(𝑋𝑖
𝑃) with 

eigenvector ф = (ф1,..., фn)
T corresponding to the largest eingevalue. The scale 

parameter (βi) is: 

𝛽𝑖 = (
∑ ||𝑋𝑖

𝑃||²𝑛
𝑘=1

||𝑋𝑖
𝑃||²

)

1/2

ф𝑖, 

which is repeated for all landmarks configurations. 

A2. ELLIPTICAL FOURIER ANALYSIS 

Another method used to obtain geometric information about objects is through outline 

extraction. An outline can be a segment between two points, in which case it is an open 

outline, or a segment that returns to its point of origin, which is a closed outline. A closed 

outline generates a shape captured from the coordinates of a sequence of points along the 

analyzed structure (Rohlf, 1990). Among the outline methods used to analyzed closed 

countor, Elliptic Fourier Analysis (EFA) is one of the most used thechnique and has 

proven to be a powerful method for studying outline shape, mainly due to factors such as 

not requiring the same number of points on the outline for all samples (the GPA method), 
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not needing a biologically or mathematically determined homologous point, and being 

able to be applied to very complex outlines (Lestrel, 2008). 

A2.1 EFA's mathematical procedures 

EFA represents a parametric function in the sense that the x and y directions are 

configured separately as cumulative functions of a third variable t along the outline. The 

Fourier descriptors resulting from these functions are invariant in size, rotation, and 

position (Kuhl & Giardina, 1982; Lestrel, 2008). The parametric functions proposed by 

Kuhl & Giardina (1982) are defined in x(t) and y(t), respectively as: 

𝑥(𝑡) = 𝐴0 +  ∑ 𝑎𝑛 cos 𝑛𝑡

𝑁

𝑛=1

+  ∑ 𝑏𝑛 sin 𝑛𝑡 

𝑁

𝑛=1

 

and 

 𝑦(𝑡) = 𝐶0 +  ∑ 𝑐𝑛 cos 𝑛𝑡

𝑁

𝑛=1

+  ∑ 𝑑𝑛 sin 𝑛𝑡 

𝑁

𝑛=1

 

where an, bn, cn and dn are the harmonic coefficients n, and N is the maximum number of 

harmonics. The Fourier coefficients for projection x are: 

𝑎𝑛 =
1

𝑛²𝜋
 ∑

Δ𝑥𝑝

Δ𝑡𝑝
[cos(𝑛𝑡𝑝) −

𝑞

𝑝=1

cos(𝑛𝑡𝑝−1)]   

and 

𝑏𝑛 =
1

𝑛²𝜋
 ∑

Δ𝑥𝑝

Δ𝑡𝑝
[sin(𝑛𝑡𝑝) −

𝑞

𝑝=1

sin(𝑛𝑡𝑝−1)]  

where q is the total of points along the polygon. Here tp is the distance between point p 

and point p + 1 along the polygon, and xp and yp are the projections for the segments p to 

p + 1, respectively. The Fourier coefficients for projection y are: 

𝑐𝑛 =
1

𝑛²𝜋
 ∑

Δ𝑦𝑝

Δ𝑡𝑝
[cos(𝑛𝑡𝑝) −

𝑞

𝑝=1

cos(𝑛𝑡𝑝−1)]   

and 

𝑑𝑛 =
1

𝑛²𝜋
 ∑

Δ𝑦𝑝

Δ𝑡𝑝
[sin(𝑛𝑡𝑝) −

𝑞

𝑝=1

sin(𝑛𝑡𝑝−1)]   
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 For more details of the mathematical procedures of EFA, see Lestrel (2008). EFA 

has proven to be a powerful method to study shape, since it does not require the same 

number of points in the outline of all samples, nor a biologically or mathematically 

determined landmark, and can be applied to very complex outlines. The removals of size, 

rotation, and position effects were done through the normalization based on the first 

harmonic, as a result the first three coefficients of the first harmonic are transformed into 

a1=1 and b1=c1=0 (Crampton, 1995). The generated Fourier coefficient matrix is used in 

the subsequent analyses.  
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