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Abstract
In the globalized world, there is always the need for new investments in energy sources to
meet all the demands, not only industrial but also population ones. In a world where we
already have more than 8 billion inhabitants, there is a very great demand for energy for
the daily needs of the population, for example. In addition to the need for energy, one
concern is rising temperatures on earth. For this reason, countries have been trying at all
costs to reduce the global average temperature of the earth by 2°C. For this goal to be
achieved, many countries are investing in renewable energy sources as one of the ways
to contribute these reductions in greenhouse gases in the atmosphere which is one of the
causes of global warming. For this reason, in November 2021, in Glasgow, Scotland, the
Brazil it committed by the year 2030 to reduce its greenhouse gas emissions by around
50%, with investments in clean and renewable energy. In Brazil, the energy sources that
can contribute to the country achieving this established goal are wind and solar power.
From this perspective, one of our objectives in this work was to understand and analyze
the persistence and mixtures of probability distributions, through statistical, numerical,
and artificial intelligence methods to estimate the potential of wind and solar power
generation. For this, mixtures of probability distributions, and the Multifractal Detrended
Fluctuation Analysis-MFDFA Method are used in the modeling of the series. In addition,
the geographic spatialization of the potential of wind velocity values was performed, and
it was observed that for those velocities that are above 3.0m/s, the higher the height, the
greater the occurrence of these observations of velocities above this threshold. Among the
five Brazilian regions (North, Northeast, South, Southeast and Midwest), it is observed
that the Northeast region has higher potential for wind power generation. The region also
showed good results for the installation of solar panels. Wind and solar energy sources
are important for generating clean and renewable energy across the country and can be
considered complementary sources. It is expected that this research will be able to assist
public agencies in decision-making about investments in renewable energies, in particular,
in the wind and solar energy sources. It is important to highlight that investments in
wind and solar energy are needed in Brazil and around the world due to the growing
need to replace conventional and non-renewable energy sources with renewable and clean
alternatives.

Keywords: Wind energy, Solar energy, Renewable sources, probability distribution,
MFDFA.
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Resumo
No mundo globalizado há sempre a necessidade de novos investimentos em fontes de
energia para atender todas as demandas não só industriais, mas também populacionais.
Em um mundo com uma população de mais de 8 bilhões de habitantes, há uma demanda
muito grande de energia para as necessidades diárias da população, por exemplo. Além da
necessidade de energia, uma preocupação é o aumento das temperaturas na Terra. Por esta
razão, os países têm tentado a todo custo reduzir a temperatura média global da Terra
em 2°C. Para que esse objetivo seja alcançado, muitos países estão investindo em fontes
renováveis de energia como uma das formas de contribuir com essas reduções dos gases
de efeito estufa na atmosfera que é uma das causas do aquecimento global. Por isso, em
novembro de 2021, em Glasgow, na Escócia, o Brasil se comprometeu até o ano de 2030 a
reduzir suas emissões de gases de efeito estufa em cerca de 50%, com investimentos em
energia limpa e renovável. No Brasil, as fontes de energia que podem contribuir para que o
país alcance essa meta estabelecida são a energia eólica e a solar. Nessa perspectiva, um
de nossos objetivos neste trabalho foi entender e analisar a persistência e as misturas de
distribuição de probabilidade por meio de métodos estatísticos, numéricos e de inteligência
artificial para estimar o potencial de geração de energia eólica e solar. Para isso, misturas
de distribuições de probabilidade e o Método Multifractal Detrended Fluctuation Analysis
(MFDFA) são utilizados na modelagem das séries. Além disso, foi realizada a espacialização
geográfica dos valores potenciais de velocidade do vento e observou-se que para aquelas
velocidades acima de 3,0m/s, quanto maior a altura, maior a ocorrência dessas observações
de velocidades acima desse limiar. Dentre as cinco regiões brasileiras (Norte, Nordeste, Sul,
Sudeste e Centro-Oeste), observa-se que a região Nordeste apresenta maior potencial de
geração eólica. A região também apresentou bons resultados para a instalação de paineis
solares. As fontes de energia eólica e solar são importantes para a geração de energia limpa
e renovável em todo o país e podem ser consideradas fontes complementares. Espera-se que
esta pesquisa possa auxiliar os órgãos públicos na tomada de decisões sobre investimentos
em energias renováveis, em especial, nas fontes de energia eólica e solar. É importante
destacar que investimentos em energia eólica e solar são necessários no Brasil e no mundo
devido à crescente necessidade de substituição de fontes de energia convencionais e não
renováveis por alternativas renováveis e limpas.

Palavras-chaves: Energia eólica, Energia solar, Fontes renováveis, distribuição de proba-
bilidade, MFDFA.
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Chapter 1

Introduction

Wind speed and solar radiation are complex and nonlinear variables, which require
effort for their modeling. Nevertheless, in recent years, several studies have been carried
out seeking a way to use winds and radiation in the generation of wind and solar energy,
since these are energy sources considered clean and inexhaustible. Another reason for the
generation of this type of energy refers to the growth of the world population, with the
need for greater energy consumption and replacement of conventional energy matrices,
such as those from the water forces that remains as the main energy source (ABEEOLICA,
2019a), by renewable sources. Moreover, unlike that achieved with fossil fuels, the energy
produced by the winds does not pollute the environment (CAMELO et al., 2015) and can
contribute to the decrease in global warming, one of the major global concerns.

In Brazil, only the Midwest and the North regions do not produce wind power.
The Northeast region has stood out as the main producer of wind energy, followed by the
southern region of the country. The winds of the Northeast have been favorable to this end,
as this region is benefited by the trade winds of the South Atlantic, characterized as strong,
stable, and coming from the same direction in much of the time (ABEEOLICA, 2019b).
With the winds considered the strongest in the world, the Northeast broke three records
in August 2019, managing to produce 89% of all energy consumed in the region in this
period (ONS, 2019). The dry period in the Northeast region of Brazil occurs in the second
half of the year, leaving water reservoirs scarcer to produce energy in hydroelectric plants.
However, in this period the most intense winds of the year occur, offsetting consumers
with wind energy in full production.

The intense use of wind for wind power generation is justified by the number
of wind farms installed: more than 600 in Brazil, with a total of more than 7000 wind
turbines, producing around 15 GW of wind power. By 2024 the country is expected to
have a production of approximately 20 GW of power (ABEEOLICA, 2019a). However,
it is recognized the need to check the average speed of winds before the installation of
a wind power plant, because the irregularity or scarcity of wind over long periods can
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cause damage in the maintenance of a wind turbine. It should be noted that the minimum
speed required to generate wind power is around 3.1 m/s. Values below this average make
it impossible to install the parks since wind turbines would produce only enough energy
for their own operation (SANTOS et al., 2021).

Several mathematical models and computational tools help to understand wind
behavior (NEDAEI; ASSAREH; WALSH, 2018), such as probabilistic models Weibull
(DEEP et al., 2020; SUMAIR et al., 2020; GUARIENTI et al., 2020; ARSLAN et al.,
2020)), Rayleigh (SERBAN; PARASCHIV; PARASCHIV, 2020; CHIODO; NOIA, 2020;
GORLA; PALLIKONDA; WALUNJ, 2020), and Gamma (ÖZKAN; SEN; BALLI, 2020;
NADIA et al., 2020) in addition to the mixtures of Weibull-Gamma and Weibull-Normal
truncated probability distributions, for example (MIAO et al., 2019). Given the excellent
results obtained with mixtures of distributions to the historical series of wind speed with
bimodality or multimodality behavior, it is chosen to use these combinations of probability
distributions in the adjustment of distributions to be performed with this thesis. Seeking
to minimize the estimation error associated with the estimated data in relation to the
real ones, it is proposed the use of optimization algorithms, such as Particle Swarm
Optimization (CARNEIRO et al., 2016) and the Expectation-Maximization numerical
method (BRACALE; CARPINELLI; FALCO, 2017). Being chosen the best distribution
for modeling the database, the next step was to calculate the wind power density for
each historical series and then interpolate the wind potential throughout Brazil. Based on
interpolation it is possible to know the potential of wind generation in places where you do
not have information from the actual information of each weather station, creating a wind
map of the country at six different heights of wind speed. The wind heights studied were
10m, 25m, 50m, 75m, 100m, and 120m. In addition, although there are several models of
probability distributions for wind speed estimation, in this work we used the Multifractal
Detrended Fluctuation Analysis (MFDFA) model to analyze the persistence existing in
wind speed series over the years.

The MFDFA method, in addition to the application in wind speed series, was also
used in hourly time series of solar radiation in the Northeast region of Brazil. This study
can be considered one of the pioneering studies in the country, taking into account, mainly,
the large number of meteorological stations that were used in the research. Some studies
already done with solar radiation in northeastern Brazil were: Silva et al. (2010), which
analyzed reanalysis data at two stations in the Northeast region and used cluster analysis
in the data. Andrade e Tiba (2016), made a detailed analysis of terrestrial measurements of
global solar irradiation, in eight meteorological stations in northeastern Brazil, which are,
Água Branca, Santana do Ipanema, Palmeira dos Índios, Laje, Pão de Açúcar, Arapiraca,
Coruripe, and Maceió. Lima, Ferreira e Morais (2017) analyzed the performance of a
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photovoltaic system connected to an existing power distribution network in northeastern
Brazil. In our research, 137 meteorological stations distributed in the nine states of the
Northeast region of Brazil were studied, using the Multifractal Detrended Fluctuation
Analysis (MFDFA) methodology. After the estimates of the multifractality parameters,
we performed the parameters estimation where no information on solar radiation was
available using the Inverse Distance Weighting (IDW) interpolation method.

This method has been widely used in modeling different phenomena of science,
such as in the financial market (CHOROWSKI; STRUZIK, 2021; XIAO; WANG, 2021),
agricultural commodities market (NASCIMENTO et al., 2022), diseases such as COVID-19
(KHAN et al., 2022), energy market (ALI; ASLAM; FERREIRA, 2021), the efficiency
of the electricity market during the COVID-19 pandemic (NAEEM et al., 2022) and
climatology (ZHANG et al., 2021). In the application of solar radiation series, studies
such as (MADANCHI et al., 2017) analyzed solar radiation in some locations distributed
worldwide using the MFDFA method. In Brazil, until where it was researched, we did not
find studies using the MFDFA method applied to hourly series of solar radiation.

Finally, through this research, it was possible to understand the behavior of the
wind speed and solar radiation series to help in the predictive capacity of wind and
solar power generation. For example, if the wind speed in a given location is below
3.1m/s, an aerogenerator will not produce enough power to power the subsystems of power
distributions. Based on the predictive results obtained with the time series of wind speed
and solar radiation, it is possible to outline investment strategies for the implementation
of wind and solar farms that are promising for investors. This contributes to the reduction
of costs in the implementation, generation, and distribution of energy in all Brazilian
regions, thus cooperating so that Brazil achieves self-sufficiency in the generation of clean
and inexhaustible energy in the future.

Objectives

General Objective

The objective of this thesis was to understand and analyze the persistence and mix-
tures of probability distributions, through statistical, numerical, and artificial intelligence
methods to estimate the potential of wind and solar power generation in Brazilian data.
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Specific Objectives

For the overall objective to be achieved, the specific objectives were:

• To analyze the spatial trend of wind speed in northeastern Brazil and multifractal pa-
rameters using the Inverse Distance Weighting method, to provide useful information
in the selection of regions with wind potential;

• Compare several mixtures of probability distributions using statistical, numerical,
and artificial intelligence methods in wind speed series in Petrolina-PE, Brazil;

• To verify multifractality properties existing in solar radiation series in northeastern
Brazil;

• Estimate the density of wind potential in the five Brazilian regions from the mixture
of probability distributions.

Scientific Questions
Four main questions address this thesis:

1. Can understanding the behavior of hourly wind speed contribute to the identification
of possible locations for the installation of wind farms?

To answer this question, in the first article, we applied the Multifractal Detrended
Fluctuation Analysis method and the Weibull-Weibull probability distribution mix-
ture to analyze the behavior of wind speed series in the nine regions of northeastern
Brazil. The results showed that the wind speed series indicated persistent behavior
in all meteorological stations and the Weibull-Weibull mixture achieved good adjust-
ments to the hourly series with bimodal behavior. The Expectation Maximization
algorithm was used to estimate the Weibull parameters. From this, we used the
Inverse Distance Weighting method to estimate wind speed behavior information
where no a priori information was yet available. Based on this information, investors
and public agencies can make their decisions to install wind farms in certain locations
or not.

2. Through statistical methods and artificial intelligence, what better combination
of mixtures of probability distributions to adjust wind speed at the Petrolina-PE
weather station in the Northeast region of Brazil?

To answer this question, in the second article we compared several methods of
mixtures of probability distributions in the adjustment of bimodal series of wind
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speed in Petrolina-PE, Northeastern Brazil. To estimate the parameters of the
mixing models, the optimization methods were used: Moment Method, Maximum
likelihood method, and the artificial intelligence method Particle Swarm Optimization
algorithm-PSO. Based on the results, the best model that adjusted to the data was
the LogNormal-Weibull distribution mixture via PSO.

3. Do the solar radiation series in the Northeast region of Brazil present persistent
behavior?

To answer this question, in the third article, we applied the Multifractal Detrended
Fluctuation Analysis-MFDFA method in the modeling of solar radiation series
throughout the Brazilian Northeast region. We observed that all weather stations
presented persistent behavior in the solar radiation series. This fact indicates that
radiation series over time do not present significant changes in their behavior.

4. Would it be possible to distribute the surplus of wind energy produced in a given
region of Brazil to other regions with low energy production?

To answer this question, in the fourth article we used the Weibull-Weibull distribution
mixing model to adjust the wind speed series throughout Brazil. The Expectation-
Maximization method was used to estimate the parameters. After estimating the
parameters of the mixing model, wind power density was calculated. Based on the
results, it was possible to notice that in regions such as the Northeast, wind power
density is four times higher than in the North region. In this case, the Northeast
could easily distribute its surplus of production to the North region if it needs to.
The same thing was observed in the southern region of the country, where this region
could also distribute its surplus to the Southeast and Midwest regions, in addition
to selling to countries that border the region.

Thesis Structure
The structure of this thesis consists of five chapters described below:

Chapter 1 – Introduction: A brief general introduction of the modeling and
analysis of wind speed and solar radiation series, presentation of the general and specific
objective of the thesis, and the main questions that guided this research;

Chapter 2 – Mixture distribution and multifractal analysis applied to wind speed
in the Brazilian Northeast region. Article published in Chaos, Solitons and Fractals;
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Chapter 3 – Comparison of methods and distribution models for the modeling of
wind speed data in the municipality of Petrolina, Northeast Brazil. Article published in
Research, Society and Development;

Chapter 4 – Multifractal analysis of solar radiation in the northeastern region of
Brazil. Article accepted for publication in Fractals;

Chapter 5 – Prediction of wind energy generation potential in Brazil using
mixtures of Weibull distributions. Article to be submitted for evaluation in Energy.

General Conclusions - Main conclusions of this thesis and possible future work.
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Abstract 

The identification of the probability distribution model that provides the best fit to the wind 

speed databases is necessary for defining investment and developing projects about the wind 

potential of different locations. For this, the estimation of the parameters of the models is 

essential in this process. The aim of this study is to investigate among the distribution models 
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and methods for estimating their respective parameters with better modeling in the literature 

which of them provides better fit to the wind speed data of Petrolina-PE. Through the case 

study, of quali-quanti nature, the adjustment of the Moment Method, the Estimation of 

Maximum Likelihood and the Particle Swarm Optimization (PSO) algorithm with Weibull were 

evaluated in this work, as well as the PSO with the Lognormal-Weibull and Weibull-Weibull 

distributions to the historical series of information. The results, investigated with the ����, 

�� and �� error measures and by verifying the percentage of correctness between the theoretical 

and sample quantiles, demonstrated a better modeling of the Lognormal-Weibull distribution 

model with the PSO algorithm to the historical speed series of the wind. Thus, from the 

determination of the best distribution model that fits the data in the region, it may be possible 

to generate estimated wind speed series for areas where these historical series do not exist. 

Keywords: Weibull; Lognormal; MM; EMV; PSO; Adjustment. 

 

 

 

Resumo 

A identificação do modelo de distribuição de probabilidade que forneça o melhor ajuste às bases de 

dados de velocidade do vento é necessária para definição de investimento e desenvolvimento de projetos 

acerca do potencial eólico de diversas localidades. Para isso, a estimativa dos parâmetros dos modelos 

é essencial nesse processo. O objetivo deste estudo é investigar dentre os modelos de distribuição e 

métodos para estimativa de seus respectivos parâmetros com melhor modelagem na literatura qual deles 

fornece melhor ajuste aos dados de velocidade do vento de Petrolina-PE. Através do estudo de caso, de 

natureza quali-quanti, foram avaliados neste trabalho o ajuste do Método dos Momentos, da Estimação 

de Máxima Verossimilhança e do algoritmo Particle Swarm Optimization (PSO) com a Weibull, bem 

como o PSO com as distribuições Lognormal-Weibull e Weibull-Weibull à série histórica de 

informações. Os resultados, investigados com as medidas de erro ����, �� e �� e pela verificação da 

porcentagem de acerto entre os quantis teóricos e amostrais, demonstraram melhor modelagem do 

modelo de distribuição Lognormal-Weibull com o algoritmo PSO à série histórica de velocidade do 

vento. Dessa maneira, através da determinação do melhor modelo de distribuição que se ajuste aos dados 

na região, pode ser possível gerar séries de velocidade do vento estimadas para áreas onde não existem 

essas séries históricas. 

Palavras-chave: Weibull; Lognormal; MM; EMV; PSO; Ajuste. 
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Resumen 

La identificación del modelo de distribución de probabilidad que proporciona el mejor ajuste a 

las bases de datos de velocidad del viento es necesario para definir la inversión y desarrollar 

proyectos sobre el potencial eólico de diferentes ubicaciones. Para esto, la estimación de los 

parámetros de los modelos es esencial en este proceso. El objetivo de este estudio es investigar 

entre los modelos y métodos de distribución para estimar sus respectivos parámetros con un 

mejor modelado en la literatura que de ellos proporciona un mejor ajuste a los datos de 

velocidad del viento de Petrolina-PE. A través del estudio de caso, de naturaleza quali-quanti, 

el ajuste del Método momento, la Estimación de Máxima Probabilidad y el algoritmo de 

Optimización de Enjambre de Partículas (PSO) con Weibull fueron evaluados en este trabajo, 

así como el PSO con las distribuciones Lognormal-Weibull y Weibull-Weibull a la serie 

histórica de información. Los resultados, investigados con las medidas de error ����, �� y 

�� y al verificar el porcentaje de corrección entre los cuantiles teóricos y de muestra, 

demostraron un mejor modelado del modelo de distribución Lognormal-Weibull con el 

algoritmo PSO a la serie de velocidad histórica del viento. Por lo tanto, a partir de la 

determinación del mejor modelo de distribución que se ajuste a los datos de la región, puede 

ser posible generar series estimadas de velocidad del viento para áreas donde estas series 

históricas no existen. 

Palabras clave: Weibull; Lognormal; MM; EMV; PSO; Ajuste. 

 

1. Introduction  

 

Wind energy is an important energy source in the replacement of sources obtained by 

conventional and exhausting resources. According to ABEEolica, it is expected that by 2023 

the production of wind energy on Brazilian soil will reach the mark of almost 20 GW of installed 

capacity (ABEEolica, 2019), reducing the consumption of fossil fuels to generate this energy 

source.  

An advantage in the case of the substitution of water by winds in strengthening the 

energy matrix is the greater use of the water reserve of reservoirs for human consumption, 

animal and irrigation, among others, especially in regions affected by scarcity of rains and large 

droughts. 

However, before the installation of wind farms, investigations are needed on the 

potential to obtain energy from winds in localities that have conditions considered favorable to 

this end (dos Santos et al., 2019). For this, the modeling of wind speed is being performed 
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through the Probability Density Functions in the adjustment of distribution models to the 

databases.  

In the literature, several probabilistic distributions have been used (Gamma, Raileigh, 

Log-Normal, Logística, Burr), especially the Weibull distribution (Rocha et al., 2018) and the 

mixtures of distributions, such as Lognormal-Weibull e Weibull-Weibull (Rajapaksha & 

Perera, 2016). 

To obtain the parameters of the model that fits the data it is necessary to choose the 

methods that perform the best estimates, such as the Moment Method (MM) and the Maximum 

Likelihood Estimation (EMV) or optimization algorithms such as Particle Swarm Optimization 

(PSO), in order to minimize the estimation errors obtained with traditional methods. In this 

choice, the performance of the adjustment of the parameters can be evaluated according to the 

values of the Coefficient of Determination (��) and the Mean Quadratic Error of The Residue 

(RMSE), as well as the Chi-square test statistic (��). 

Thus, the objective of this work is to compare the adjustments made with MM, EMV, 

and PSO and to seek the values for Weibull parameters that allow lower errors in the estimation 

of the parameters of this distribution.  

The mixtures of Lognormal-Weibull and Weibull-Weibull distributions were observed 

with optimization with the PSO algorithm. For the comparison, we used hourly historical series 

of wind speed of Petrolina-PE, due to the need to reduce water consumption in the vicinity of 

this region for energy production purposes, since the locality requires aquifer reserves for 

irrigation of different fruit trees predominant in the surroundings (Melo et al., 2014). 

The rest of this article is structured as follows. Section 2 describes the region 

investigated and the database used. Section 3 is explored the description of the distribution 

models Weibull, Weibull-Weibull, and Lognormal-Weibull. Section 4 presents the Moment 

Method and the Maximum Likelihood Estimation Method. Section 5 sets out a description of 

the Particle Swarm Optimization algorithm. Section 6 shows statistical estimates adopted in 

this article. In section 7 the results and discussions are covered. Finally, section 8 finds the final 

considerations of the article.   

 

2. Area of Study and Data Collection  

 

The development of this study was carried out in the municipality of Petrolina, located 

in the Brazilian Semiarid, to the extreme west of the state of Pernambuco, between the states of 

Bahia and Piauí (Jatobá et al., 2017), under the geographic coordinates of latitude -9.38832 and 
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-40.5233 (see Figure 1). Rainfall is concentrated in three to four months of the year and 

temperatures range from 18.7 º C to 33.6 º C. (da Silva et al., 2017). According to the last census 

conducted, the municipality has 293,962 inhabitants and a population density of 64.44 

inhabitants/��� (IBGE, 2019). 

 

Figure 1. The geographical position of the municipality of Petrolina in the upper Sertão of 

Pernambuco. 

 

Source: Prepared by the authors. 

 

The hourly wind speed observations used in this research were obtained from the 

National Institute of Meteorology - INMET, from 21/02/2003 to 09/30/2018. Such observations 

were collected from the automatic meteorological station located at the geographic coordinates 

of longitude -40.367 and latitude -9.150, at a height of 10 m and altitude of 366 m, in the city 

of Petrolina-PE. For the analyses, the daily means were evaluated, and all calculations were 

made in the R software. 

According to Pereira et al. (2018), this study is a case study, in which a quali-quanti 

method was applied, in which the qualitative results reinforce the numerical ones, 

complementing them. 

 

3. Distribution Models  

 

Knowledge about the distribution model that best characterizes the behavior of the wind 
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regime is fundamental in the evaluation of wind potential in a locality. In this sense, Weibull 

(W) is one of the most used distributions, especially due to the simplicity necessary to estimate 

the parameters of its model and the good adherence of the model to the different wind speed 

databases. Other distributions also applied to this end are the mixtures of Weibull-Weibull 

(WW) and Lognormal-Weibull (LNW) distributions, which present good adjustments to 

bimodal series. The mathematical expressions of the probability density functions of the 

Weibull, Weibull-Weibull and Lognormal-Weibull distribution model, with their respective 

parameters are found in Table 1 (Rajapaksha & Perera, 2016). 

 

Table 1. Mathematical equations of the Weibull, Weibull-Weibull and Lognormal-Weibull 

distribution models. 

Distribution Equation Parameters 

Weibull 
��(�; �, �) = 

�

�
�

�

�
�

���

�
��

�

�
�

�

 
(� , �) 

Weibull-Weibull ���(�; �, ��, ��, ��, ��) = ��(�; ��, ��) +

(1 − �)�(�; ��, ��) 

(�, ��, ��, ��, ��) 

Lognormal-

Weibull 

����(�; �, �, �, �, �) = ��(�; �, �) + (1 −

�)�(�; �, �) 

(�, �, �, �, �) 

Source: Prepared by the authors. 

in which � corresponds to the observation of wind speed, � is the shape parameter, � is the 

scale, � is the weight of the mixture of distributions, � is the average and � is the standard 

deviation, being �(�; �, �)=
�

� �√��
��� �

�(��(�) � ��)

��� �. 

 

4. Numerical Methods for Estimating Parameters  

 

In the Moment Method, the estimation of population parameters occurs through an 

iterative process based on the sample and theoretical (population) moments of the random 

variables, equaling them (de Souza et al., 2019), that is, 

 

��  =  ��, � = 1,2, . . . , �, (1) 
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in which �� are the sampling moments, and �� are the theoretical moments.  

While Maximum Likelihood Estimation is performed from the product of the 

probability density functions (continuous random variables) or from the probability functions 

(discrete random variables) of the series observations, provided that each random variable event 

is independent (Seckin et al., 2010). It is a methodology widely used in the literature for the 

estimation of parameters. Particularly, to estimate the parameters �� the Weibull distribution 

used in the modeling of wind speed data, can be used the log-likelihood function given by 

(Ouarda et al., 2016). 

 

��� = �� �� ��� (��)

�

���

� 
(2) 

 

where � is the sample size, and ��  is every wind speed observation in the instant �. 

 

5. Metaheuristic Optimization for Estimating Models Parameters  

 

The Particle Swarm Optimization algorithm was originally developed by Kennedy and 

Eberhart and is a population-based stochastic investigation procedure. Every possible solution 

in search space is called a particle. All particles move Iteratively throughout optimization 

according to information from the best swarm experiences (particle set) and their own 

experience (Zhou et al., 2018). The velocity and position equations that guide the movement of 

each particle can be seen below.  

 

��(� + 1)  =  � ∗ ��(�)  + �� ∗ ��(��  −  ��)  +  �� ∗ ��(��  −  ��) 

 

(3) 

��(� + 1)  = ��(�)  +  ��(�) (4) 

 

in which ��  represents particle velocity �, � the iteration, � the inertial weight, �� the local 

cognitive,  �� the social cognitive, �� and �� the vectors of random numbers, �� the best position 

of particle �, �� the best position among all the particles in the swarm and ��  the position of 

particle �. 
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A function, called an adaptation function or fitness, is used to evaluate the performance 

of particles, and keep them in the direction of the best solution to the problem investigated. The 

implementation of the traditional PSO algorithm can be described as:   

(i) To generate � random particles and initialize them in the search space;  

(ii) To evaluate each particle and to calculate its respective fitness functions;  

(iii) To calculate the best local (��) and global (��);  

(iv) To update particle velocities and positions using Equations 3 and 4;  

(v) Update the inertial weight w according to the current iteration information.   

The process must be repeated until some stop criterion is reached, such as reaching the 

maximum expected error or a maximum number of iterations of the algorithm.  

 

6. Statistical Estimates  

 

With the methods of estimation of parameters used, the evaluation of the adjustment of 

the models to wind speed observations can be performed through the statistics Mean Quadratic 

Error of Residue (RMSE), Coefficient of Determination (��), and Chi-square (��). Their 

respective expressions can be viewed in Equations 5, 6, and 7 (Pishgar-Komleh & Keyhani, 

2015; Kumar et al., 2019). 

���� = �
1

�
������ − �����

�
�

���

�

�
�

 

(5) 

�� =
�∑ (���� − ����

�����) ∗ ����� − ����
�������

��� �
�

∑ (���� − ����
�����)� ∗�

��� ∑ ����� − ����
������

��
���

 
(6) 

�� = � �
����� − �����

�

����
�

�

���

 
(7) 

in which, ���� indicates the observed values, ���� indicates the expected values and, ����
����� and 

����
����� indicate the means of the observed and expected values, respectively. 

 

7. Results and Discussion  

 

Table 2 presents the descriptive statistics of the analyzed wind velocity database. It is 
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verified that there is low variability in the observations, with coefficient of variation (CV) of 

35.12% and an average velocity of 3.66 m/s. 

 

Table 2. Descriptive analysis of wind velocity observations in the municipality of Petrolina-

PE. 

Min. 1º Quartile Median Mean 3º Quartile Max. Skewness Kurtosis CV% 

0.10 2.80 3.70 3.66 4.50 12.00 -0.06 2.98 35.12 

Source: Prepared by the authors. 

 

Figure 2 illustrates the curves of the probability density functions resulting from the 

adjustments of the parameters of the Weibull distribution model using EMV, PSO and MM, as 

well as the results obtained with the Weibull-Weibull and Lognormal-Weibull mixtures 

applying PSO. 

 

Figure 2. Distribution models adjusted to the wind speed database in Petrolina-PE. 

 

Source: Prepared by the authors. 

According to Figure 2, although the adjustment performed by the Lognormal-Weibull 

mixture with PSO (in yellow) is standing out to the detriment of the others, visually it is not 

possible to define whether this is the optimal distribution for the modeling of the Petrolina-PE 

database in the studied period.  
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From this, the values of statistics ��, ����, and �� were examined, as shown in Table 

3. 

 

Table 3. Estimates of statistical tests. 

Statistics W-EMV W-MM W-PSO WW-PSO LNW-PSO 

�� 0.99473 0.994817 0.997848 0.997992 0.998507 

���� 0.008134 0.008057 0.005949 0.005528 0.004266 

�� 6.64e-05 6.52e-05 3.55e-05 3.09e-05 1.84e-05 

Source: Prepared by the authors. 

 

Table 3 was observed that although the Coefficient of Determination (��) of all 

analyzed methods had values very close to one, the adjustment of the Lognormal-Weibull 

distribution model with the optimization of parameters by the PSO algorithm (LNW-PSO) 

resulted in the best approximation. Regarding the Mean Quadratic Residual Error (RMSE), all 

the values obtained were very small and close to each other. However, the LNW-PSO's RMSE 

stands out as the smallest among them, revealing a better fit. Table 3 also shows that all adjusted 

distributions obtained lower statistics than the p-value of 5% for the statistic ��. However, the 

lowest of the values were obtained by the PSO algorithm applied to the Lognormal-Weibull 

distribution mixture. This fact corroborates the results obtained by statistics �� e ����, 

demonstrating that the optimization of Lognormal-Weibull parameters with the Particle Swarm 

Optimization algorithm expresses a better fit to the investigated database.   

The percentages of success of the quantiles of the data set of the adjusted distribution in 

relation to the quantiles of the empirical set of data were calculated for each adjusted model. 

The Lognormal distribution mixture with Weibull, with parameters optimized with PSO, 

showed a higher percentage of correct answers than the other models analyzed (71.14%). Next, 

weibull via EMV (70.91%) and Weibull with MM (70.8%). These results reveal that, for the 

investigated database, the numerical methods EMV and MM provide good adjustments if 

applied to the Weibull distribution. On the other hand, for mixtures of distributions the PSO 

optimization algorithm provides better approximation of model parameters to the sample data 

if the Weibull distribution combined with the Lognormal distribution is applied, to the 

detriment of the Weibull-Weibull distribution for the data studied. This result is interesting 

because, in general, Weibull and Weibull-Weibull distributions are better adjusted to wind 

speed series, there is no optimal model that can perform modeling on all wind speed series. 
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(Qin et al., 2012). 

Figure 3 illustrates the convergence graph for 30 PSO simulations during the 

optimization of the parameters of the Lognormal and Weibull distribution mixture (in black) 

and for the average behavior of these simulations (in red). 

 

Figure 3. PSO convergence process in the search for the optimal parameters of the LNW 

distribution model. 

 

Source: Prepared by the authors. 

 

The Ox axis in Figure 3 indicates the number of iterations performed and the Oy axis 

the fitness value obtained at each iteration. The fitness function was used to minimize the 

distance between the sample density and the theoretical of the LNW. A decline in fitness values 

is observed throughout the iterations, in addition to the good and rapid convergence of the PSO 

in the search for the ideal parameters of the Lognormal-Weibull distribution model. 

The swarm in the search for optimal parameters was composed of 30 particles. Figure 4 

illustrates the movement of the best particle.  
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Figures 4. Movement of the best particle in the search space in relation to the parameters of the 

Lognormal and Weibull distribution, respectively.

 

Source: Prepared by the authors. 

 

It is possible to verify that Figure 4 displays the movement of the best particle in the 

search space at each iteration of the PSO, in relation to the parameters of average and standard 

deviation of the Lognormal (Meanlog and SDlog, respectively) and shape (Shape) and Scale 

(Scale) of Weibull. The green sphere indicates the starting position, while the red sphere 

indicates the final position on the movement.  

 

8. Final Considerations  

 

From the comparison of the adjustments made between the Weibull distribution with 

the Moment Method, with the Maximum Likelihood Estimation and with the Particle Swarm 

Optimization algorithm, as well as the Lognormal-Weibull and Weibull-Weibull adjustments 

both with the PSO, it was verified that the lowest estimation errors of the parameters of these 

distributions with the adopted methods were achieved with Lognormal-Weibull via PSO,  with 

a percentage of hit of 71.14% of the adjusted data compared to the empirical data set of 

Petrolina-PE in the analyzed period. 

This result is important in the sense that it is of paramount importance to determine the 

distribution model that offers better quality in the adjustment to wind speed data in order to 

assist in making decisions about the wind potential of the region, being able to minimize 

operational costs of wind power management, generation and distribution. 
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As future studies, the Lognormal-Weibull distribution combined with the Particle 

Swarm Optimization algorithm to obtain the parameters of the model can be used to calculate 

the potential of wind generation in the municipality of Petrolina, Pernambuco. In addition, 

studies on the gust of winds in this region can be conducted and assist public and private 

managers for better wind use, aiming at reducing losses arising from the by damage caused by 

high gusts in wind turbines. 
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ABSTRACT: In this work, we used hourly data of high frequency of solar radiation from the entire 

Northeast region of Brazil. We used the Multifractal Detrended Fluctuation Analysis (MFDFA) method 

to analyze the characteristics of the solar radiation series in 137 meteorological stations from 2010 to 

2022. For all analyzed series, the parameter �� > 0.5 characterizes persistent series. The values of � >

1 reveal asymmetry to the right, indicating that large fluctuations contributed to the multifractality 

process. The states of Maranhão and Bahia presented the highest values of spectrum width �, indicating 

greater complexity. We found that long-range correlations are the leading cause of multifractality 

observed in the dynamics of the series of solar radiation anomalies. 

Keywords: Multifractal, solar energy, solar radiation, persistence, complexity. 

 

 

 

 
1    * Corresponding author. 

        Email address: fabio.sandropb@gmail.com (Fábio Sandro dos Santos) 

 

40

Chapter 4



1. INTRODUCTION 

Photovoltaic (PV) solar energy can act as a complementary energy source to existing renewable 

sources worldwide. There is uncertainty about each country's compliance with the Paris Agreement on 

reducing CO2 in the atmosphere. Regarding countries' actions at COP26, in Glasgow, Scotland, in 

2021[1], there is a concern for the agreements to be served up to 2030, with a temperature reduction of 

around 1.5°C [2]. At COP26, Brazil committed to reducing about 50% of greenhouse gas emissions in 

the atmosphere, showing that by 2019, around 53.8% of all Brazilian energy was derived from fossil 

sources [3]. On June 09, 2022, more than 83% of all energy in Brazil was from renewable energies, 

exceeding 184 GW of installed power [4]. Based on these observations, photovoltaic energy can 

contribute to the reduction of global warming, as this energy source is clean and renewable. In the 

globalized world, there is an expanding need for investment in new renewable sources to supply all the 

energy demand. 

The photovoltaic energy market has been extensively studied. In recent years, several researchers 

have studied the photovoltaic energy potential [5], [6], [7], [8], [9], [10]. Other studies used the MFDFA 

Multifractal Detrended Fluctuation Analysis method in the solar radiation series [11], [12], [13]. The 

studies verified the complexity properties of multifractality, which are pretty relevant in solar radiation 

series since it is possible to understand the characteristics of time series, such as persistence, anti-

persistence, and dynamics. Plocoste and Pavón-Domínguez [14] found evidence of long-range 

correlations and small and significant fluctuations in the solar radiation series. 

In Brazil, in recent years, investments in photovoltaic energy generated from solar panels have been 

gaining more and more space in its energy matrix [15]. Some research is being done with the objective 

of understanding this clean and renewable energy source in the country [16], [17], [18]. In this scenario, 

Brazil has great potential for photovoltaic energy; the country contributes to reducing the greenhouse 

effect in the atmosphere. Water is the main source of Brazilian energy generation used for energy 

generation by hydroelectric plants, which account for about 60% of the entire energy matrix in Brazil 

[19]. 
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Photovoltaic energy is expected to be responsible for about 3.9% of all Brazilian energy by 2025, 

reaching 36% by the year 2050 [20]. Marchetti and Rego (2022) [21] observed that in Brazil's Northeast 

and Southeast regions, solar park performance capacity peaks occur at noon, with large productions 

between 10 am and 3 pm. In the state of Paraíba, located in the Northeast region of Brazil, water use for 

hydroelectric energy can be replaced by energy generated from solar radiation [22]. In the researched 

literature, no work was found using the Multifractal Detrended Fluctuation Analysis – MFDFA method 

to analyze the time series of solar radiation in Brazil. To fill this gap in the literature, we used the 

MFDFA method in the daily time series of solar radiation from 2010 to 2022. In this article, we 

investigated the multifractality properties of the time series of solar radiation in the entire Northeast 

region of Brazil, intending to verify suitable areas for installing solar panels for the possible generation 

of solar energy.  

The rest of the article is organized as follows: In section 2, study areas, the study stations are located. 

In section 3, we present the MFDFA methodology. In subsection 4, we present the Inverse Distance 

Weighting (IDW) interpolation method for estimating values in which we do not have any a priori 

information. Section 5 shows the results found and compares them with the literature. In section 6, we 

conclude our findings in this article. 

 

2. STUDY AREA 

The Northeast region of Brazil has a geographic area of approximately 19,427 km² [23]. The 

Northeast is characterized as a dry and semi-arid region. Most of the time, it has low precipitation rates 

in much of the region. Detailed solar radiation �
�

�

�
� databases containing hourly measurements from 

2010 to 2022 in the Northeast region of Brazil were obtained from the National Institute of Meteorology 

(INMET2). Figure 1 shows the geographical locations of the meteorological stations investigated in the 

states Alagoas-AL, Bahia-BA, Ceará-CE, Maranhão-MA, Rio Grande do Norte-RN, Paraíba-PB, 

Pernambuco-PE, Piauí-PI and Sergipe -SE in the Northeast region of Brazil. 

 

 
2 https://tempo.inmet.gov.br/TabelaEstacoes/ 
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Figure 1. The geographical location of meteorological stations in the Northeast region of Brazil. 

In Figure 2, to exemplify the times with the highest incidence of solar radiation, we present the 

historical series of the behavior of a measurement day for the nine capitals of the Northeast Region of 

Brazil. For all capitals, the peak of solar radiation occurs between 10:00 am and 3:00 pm on August 29, 

2022 (Time zone in Brasilia, Federal District (GMT-3)). 

 

Figure 2. Hourly time series of solar radiation �
�

�

�
� measured on August 29, 2022. 
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3. Method 

The Multifractal Detrended Fluctuation Analysis (MFDFA) method is a generalization of the 

Detrended Fluctuation Analysis (DFA) method. MFDFA is a powerful tool for detecting multifractal in 

a non-stationary time series with small and large fluctuations. 

The MFDFA method has been widely used in financial series applications [24], energy market [25], 

the impact of COVID-19 on energy prices [26], rainfall characteristics in India [27], closing prices of 

commodities [28], in addition to the time series of temperature and solar radiation [29]. The 

implementation of the MFDFA method considers any set of a non-stationary time series �� 

(� = 1,2, … , �) with a specific length �. We determine the following steps of the MFDFA: 

(�) The first step is to construct a new integration of the original series �(�) after subtracting the 

mean of the time series �̅, in which �̅ =
�

�
∑ ��

�
��� , 

�(�) = ���(�) − �̅�

�

���

, � = 1,2, … , �. 
(1)  

 

(��)  The second step is to generate an integrated series, subdividing �(�) into �� = ���(
�

�
) non-

overlapping segments of sizes equal to �(scale). In the segments � = 1,2, … ,
�

�
, the local trend ��,�(�) 

is estimated by the least squares fit of the series. 

(���) In the third step, the unbiased variance is estimated by the following equation: 

��(�, �) =
1

�
� ��(�) − ��,�(�)�

�
��

��(���)���

 
(2) 

(��) In the fourth step, we calculate the average of all segments and obtain the fluctuation function 

of order �, given by the following equation: 

��(�) = �
1

��
�[��(�, �)]

�
�

��

���

�

�
�

 , 

(3) 

where � can take on any real value other than zero. 
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(�)  In the fifth step, the scales of the fluctuation functions are analyzed using ��� − ��� ��(�) 

graphs at each scale �, in which they follow a power law ��(�) ∝ ��(�) for cases where long-range 

correlations are present in the time series.  

The scale exponent ℎ(�) is called the generalized Hurst exponent. In the case where a time series is 

stationary, ℎ(� = 2) is identical to the well-known Hurst exponent (2). For positive values of �, ℎ(�) 

presents a scaling behavior of large fluctuations; in contrast to values of � negative, ℎ(�) shows small 

fluctuations. If ℎ(�) is independent of �, the time series has a monofractal process, and if ℎ(�) decays 

with respect to �, the time series has a multifractal process. 

The relationship between the generalized Hurst exponent and the Rényi exponent �(�) can be defined 

by the equation, 

�(�) = �ℎ(�) − 1, (4) 

for the monofractal process, �(�) is a linear function of �, ℎ(�) is a constant, and for time series with a 

multifractal process, �(�) is a nonlinear function. The latter can also be characterized by the singularity 

spectrum or multifractal spectrum �(�), where it is obtained through the Legendre transform, 

�(�) =
��(�)

��
, (5) 

���(�)� = ��(�) − �(�), (6) 

where � is the Holder exponent, �(�) indicates the multifractal dimension of the singularity measure of 

the series characterized by �. For the monofractal process, the singularity spectrum is represented by a 

single point, while a downward concave function gives the multifractal spectrum. 

To measure the degree of complexity of the multifractal spectrum of a time series, we fit a fourth-

degree polynomial, and from there, we can obtain the parameters of the MFDFA method. The three 

parameters of the singularity spectrum are estimated from the following equation: 

�(�) = � + �(� − ��) + �(� − ��)� + �(� − ��)� + �(� − ��)� (7) 
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When fitted, the fourth-degree polynomial reveals the value of ��, which is the maximum point of 

the singularity spectrum. For the value of �� = 0.5, the times series are said to be random. For values 

of �� < 0.5, the series are anti-persistent, showing that the time series show behavior of sudden changes 

over time. For values of �� > 0.5, the series exhibit persistent behavior, indicating that the time series 

do not show sudden changes over time [28]. 

The asymmetry value, obtained by � =
�������

�������
, is the asymmetry value of the multifractal spectrum, 

where the value of � = 1 reveals multifractal asymmetry and indicates that the time series process is 

governed by small and large fluctuations. Values of � > 1 reveal asymmetry to the right, indicating 

large fluctuations in the multifractal process. Values of � < 1 reveal asymmetry to the left, indicating 

small fluctuations in the multifractal process [30]. The spectrum width is calculated by � = ���� −

����. Values of � = 0 indicate that the series is uniformly distributed. Higher � values indicate a 

greater degree of multifractality. 

 

4. Inverse Distance Weighting (IDW) 

The Inverse Distance Weighting (IDW) method was used to estimate values of multifractal 

complexity parameters. Through this interpolation method, it is possible to predict values of 

observations based on the information closest to the point we want to estimate. The mathematical 

equation of the IDW method is defined as follows [31]: 

� =
∑ ����

�
���

∑ ��
�
���

, (8) 

where � is the unobserved point to be predicted, ��  is the control value of the i-th point of the time series, 

and �� = ��,�,�
��

 is the weight defined in the interpolation for estimating the new point, where ��,�,� is 

the distance between �, � � and ��  and � is an exponent defined by the searcher, in our work was using 

the value of � = 3. 
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5. Results and discussion 

     In Figure 3, the highest averages of solar radiation in the Northeast region are concentrated in the 

West and Northeast parts of the region, with emphasis on the state of Ceará, Southwest of Bahia, in the 

southern part of the states of Piauí and Maranhão. In addition to a large part of the coast of Rio Grande 

do Norte and west of the border of the states of Sergipe and Alagoas. On the other hand, the coastal part 

between Bahia and Alagoas is the area with the lowest incidence of solar radiation in the Northeast 

region of Brazil. Also, according to Figure 3, the Southwest and Northeast parts of the map present the 

areas with the highest values of the standard deviation of solar radiation. To the north of the region, the 

lowest values of the standard deviation of solar radiation were verified. The state of Maranhão stands 

out because, among all the states, throughout its area, the values of the standard deviations had a uniform 

behavior. This behavior of the state of Maranhão may have been influenced by its proximity to the 

Amazon rainforest. This somehow reflects a lower standard deviation in the region. In this sense, 

deforestation can somehow influence the increase in UV indices in the atmosphere [32]. In the coastal 

part of the Northeast, the lowest values of the mean and standard deviation of radiation may be related 

to the presence of Atlantic Forest areas that still resist in this region. 

 

Figure 3. On the left is the mean, and on the right is the standard deviation of solar radiation �
�

�

�
� in 

the Brazilian Northeast.  

In order to analyze the multifractality properties of the time series of solar radiation in the Brazilian 

Northeast Region, the anomalies of 137 meteorological stations distributed throughout the nine states 
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were calculated. In applying the MFDFA method, we used the MFDFA Package [33]. The anomalies 

were calculated using the equation below: 

���
=

����̅� 

��
 , (9) 

where �� stands for the hourly values observed in the solar radiation time series, �̅� is the average of the 

time series observations, and �� is the value of the standard deviation of the solar radiation series. To 

exemplify the process of implementation and output of the results, we chose a station randomly to 

represent the graphs built with the MFDFA method. 

According to Figure 4A, the fluctuation function ��(�) presents a linear behavior in the logarithmic 

scale � of (−10 a 10); this means that the solar radiation series indicates a multifractality process over 

time. In Figure 4B, the generalized Hurst exponent ℎ� has a decreasing behavior. The Rényi exponent 

�(�) (Figure 4C) points out the nonlinear form of the process. The multifractal spectrum �(�)(Figure 4D) 

reveals a concave downward curve, confirming the presence of multifractal in the hourly time series of 

solar radiation for this randomly selected meteorological station.  

Figure 4. Behavior found with the MFDFA method for the series of solar radiation anomalies 

in Maceió-AL. (a) Fluctuation Functions, (b) Generalized Hurst Exponent, (c) Rényi Exponent, and (d) 

Multifractal Spectrum. 
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We shuffled the series of solar radiation anomalies, then applied the MFDFA method again to 

determine the multifractal complexity characteristics in all stations geographically distributed in all nine 

states of the Brazilian Northeast region. The shuffling was performed with the mathematical expression 

������ = 10.000 × ��, repeating 1000 times with different random seeds. 

From the series of anomalies and randomized series, it was possible to analyze the causes of 

multifractality present in the processes: (i) Long-range correlations; and/or (ii) The probability density 

function [34]. We observed in Figure 6 that all randomized series showed weaker multifractality in 

relation to anomaly series. This fact indicates that the long-range correlations and the probability density 

are the main causes of the multifractality observed in the radiation series. Figures 5, 6 and 7 represent 

the variation of the multifractal complexity parameters, ��, �, and �, for the original time series 

(anomalies) versus the scrambled series. 

Table 1 shows some stations where the cause of multifractality was the probability density function. 

This occurs when the value of ��  randomized is approximately equal to the value of �� of the series of 

anomalies, that is when the difference (∆�) between them is equal to or close to zero.  

 

     Table 1: Multifractal complexity parameters for some meteorological stations. 

Station Latitude Longitude � anomalies 

 (��) 

� randomized  

(��) 

∆� = �� − �� 

Iguatu-CE -6.396 -39.268 0.509 0.493 0.016 

Barreiras-BA -12.091 -44.592 0.491 0.461 0.029 

Itaporanga-PB -7.516 -38.233 0.638 0.591 0.048 

Alvorada do Gurgueia-PI -8.441 -43.865 0.568 0.512 0.056 

Apodi-RN -5.626 -37.815 0.504 0.439 0.065 
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Bom Jesus da Lapa-BA -13.251 -43.405 0.543 0.473 0.069 

Recife-PE -8.059 -34.959 0.513 0.439 0.074 

Imperatriz-MA -5.555 -47.459 0.508 0.433 0.075 

Nossa Senhora da Glória-SE -10.130 -37.251 0.716 0.639 0.077 

Picos-PI -7.071 -41.404 0.551 0.472 0.078 

Colinas-MA -8.150 -48.783 0.538 0.457 0.081 

Correntinha-BA -13.332 -44.617 0.533 0.448 0.085 

Santa Rita de Cassia-BA -11.002 -44.525 0.511 0.426 0.085 

Ribeira do Amparo-BA -11,046   -38,432 0.661 0.570 0.091 

 

Figure 5. Comparison between the multifractal process complexity parameters of the original series 

versus the randomized series: �� (blue) anomaly series and �� (red) randomized series for all solar 

radiation series.  
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Figure 6. Comparison between the multifractal process complexity parameters of the original series 

versus the randomized series: � (blue) anomaly series and � (red) randomized series for all solar 

radiation series. 

 

Figure 7. Comparison between the multifractal process complexity parameters of the original series 

versus the randomized series: � (blue) anomaly series and � (red) randomized series for all solar radiation 

series. 

Figure 8 exhibits the results obtained after applying the IDW method to estimate the MFDFA 

parameters in places where information on these parameters was not available. We notice in Figure 8A 

that all the values estimated for the parameter �� were greater than 0.5, indicating that the solar radiation 

series present persistent behavior. This situation justifies that the observed values did not decrease over 
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these 12 years of study. We also note that long-range correlations are present in the analyzed series 

because the closer  �� → 1, the longer the long-range correlation period is present in the solar radiation 

series. 

In the state of Maranhão, specifically on the coast, a greater presence of long-range correlation was 

observed among all the states of the Northeast region. In the southern and northeastern parts of the state 

of Bahia, the highest values of �� were observed, revealing a more extanding period of long-range 

correlation. In the states of Paraíba and Sergipe, the presence of long-range correlation was observed in 

the coastal part. In the other states, the values of �� behaved uniformly. 

In Figure 8B, the spectrum width (�) values ranged between (0.490 and 1.673). The highest values 

of the width of the multifractal spectrum were observed in Maranhão. This state is under the influence 

of the Amazon rainforest and is close to the equator. What may be influencing such expressive values 

of the spectrum width �. The states of Bahia, Piauí, and Paraíba presented relatively high values of 

spectrum width (W) in the Atlantic Forest and Caatinga biomes. 

One can see that these values decrease in the East/West direction. The lowest values were observed 

in the Cerrado portion, in the west of Bahia and Piauí and southeast of Maranhão. The greater the width 

of the multifractal spectrum, the greater the complexity of the stochastic process that generates the 

analyzed series and, consequently, the higher the difficulty in making predictions. In this case, the 

western regions of the states of Bahia, Piauí, and Maranhão are the places where the best regions to 

perform solar radiation prediction were observed, as well as the coastal part of Rio Grande do Norte, 

East/West of Pernambuco and West of Paraíba.   

Figure 8C shows the map of Asymmetry values (�), which ranged between (1.751 and 5.188). It was 

possible to observe that all values of � were greater than 1. Based on this spatial information, we can 

say that the multifractality of hourly solar radiation in the entire Northeast region is more influenced by 

small fluctuations. 
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Figure 8. a) values of ��, b) values of �, while c) contains the asymmetry values �.  

Similar work to our approach was carried out in the Guadeloupe archipelago located in the 

Caribbean. The authors observed that time series of solar radiation contribute to long-range correlations 

and small and large fluctuations [35, 11]. This type of characteristic can be caused by the influences of 

air masses. It is possible to observe that the locations with the highest asymmetry values are 

geographically distributed in the North and Northeast parts of the state of Maranhão, as well as in the 

southern part of Bahia and in some areas distributed in the central part of this state (Figure 8C). In these 

areas, the influence of air masses associated with the southeast trade winds [36] often hinders the arrival 

of rains during the winter period. This episode leads to an increase in solar radiation rates. Unlike other 

regions, during the winter period, the air masses can move forward with more force, and there is a 

decrease in the effect of solar radiation.  

In specific years, the main phenomena that influence the climate in the Northeast region of Brazil 

are El Niño and La Niña. In El Niño years, there is a gradual decrease in the amount of rainfall in the 

region [37]. On the other hand, in years of the presence of the La Niña phenomenon, the Northeast 

region is more susceptible to the more constant presence of rain in the region [38]. Such phenomena act 

directly on the increase or decrease of solar radiation in the Brazilian Northeast. Our findings contribute 

to a better understanding of the multifractal process of solar radiation series. The MFDFA method 

proved to be efficient in characterizing the regimes and behavior of the solar radiation series in a large 

study area such as the Brazilian Northeast region. 

With the increasing need for investments in new energy sources, the energy generated from solar 

radiation becomes an efficient source to meet the energy demand across the planet and as a 

complementary source to existing energy sources. In Brazil, solar energy already has a production of 
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approximately 16 GW (Gigawatts) of installed photovoltaic solar energy. Also, according to Associação 

Brasileira de Energia Solar Fotovoltaica (ABSOLAR), Brazil failed to send about 23.6 million tons of 

CO2 into the atmosphere with the generation of electricity. Another significant result of the investment 

in photovoltaic energy is in the economic part since approximately 500 thousand jobs have already been 

generated, and more than R$ 86.2 billion have already been applied in new investments for Brazil in 

recent years [39].  

CONCLUSION 

In this article, the multifractal process of the hourly anomalies of the time series of solar radiation in 

the Northeast region of Brazil was investigated. For that, we applied the MFDFA method in the series 

of hourly anomalies over 12 years studied and obtained the parameters of multifractal complexity ��, 

� and �, as well as the multifractal spectrum in each of the 137 stations. We observed that of the 137 

meteorological stations studied, in 14 of them, the probability density function was the leading cause of 

the multifractality process present in the time series of solar radiation. In the remaining 123 stations, the 

leading causes of multifractality present in the series were long-range correlations and the probability 

density function. In future works, a monthly application over the years using the MFDFA method should 

be made in order to compare the characteristics of multifractality in the series, as well as a future study 

for the entire Brazilian territory. 

ACKNOWLEDGMENT 

This work received financial support from the Coordination for the Improvement of Higher Education 

Personnel — Brazil (CAPES) — Financing Code 001. 

REFERENCES 

1. Smith, P., et al., (2022). Essential outcomes for COP26. Global change biology, 28(1), 1-3. 

2. Gasser, T., Ciais, P., & Lewis, S. L. (2022). How the Glasgow Declaration on Forests can help keep 

alive the 1.5° C target. Proceedings of the National Academy of Sciences, 119(23), e2200519119. 

3. Maia, R. G. T., & Bozelli, H. (2022). The importance of GHG emissions from land use change for 

biofuels in Brazil: An assessment for current and 2030 scenarios. Resources, Conservation and 

Recycling, 179, 106131. 

54



4. ANEEL, Agência Nacional de Energia Elétrica.  2022. https://www.gov.br/aneel/pt-br. Accessed in  

2022-09-15. 

5. Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential 

and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900.  

6. Zhao, X., Huang, G., Lu, C., Zhou, X., & Li, Y. (2020). Impacts of climate change on photovoltaic 

energy potential: A case study of China. Applied Energy, 280, 115888. 

7. Silalahi, D. F., Blakers, A., Stocks, M., Lu, B., Cheng, C., & Hayes, L. (2021). Indonesia’s Vast 

Solar Energy Potential. Energies, 14(17), 5424.  

8. Kan, A., Zeng, Y., Meng, X., Wang, D., Xina, J., Yang, X., & Tesren, L. (2021). The linkage 

between renewable energy potential and sustainable development: Understanding solar energy 

variability and photovoltaic power potential in Tibet, China. Sustainable Energy Technologies and 

Assessments, 48, 101551. 

9. Muhammad, A., Muhammad, U., & Abid, Z. (2021). Potential of floating photovoltaic technology 

in Pakistan. Sustainable Energy Technologies and Assessments, 43, 100976. 

10. lrwashdeh, S. S. (2021). Investigation of the energy output from PV panels based on using different 

orientation systems in Amman-Jordan. Case Studies in Thermal Engineering, 28, 101580. 

11. Plocoste, T., & Pavón-Domínguez, P. (2020). Temporal scaling study of particulate matter (PM10) 

and solar radiation influences on air temperature in the Caribbean basin using a 3D joint multifractal 

analysis. Atmospheric Environment, 222, 117115. 

12. Akinsusi, J., Ogunjo, S., & Fuwape, I. (2022). Nonlinear dynamics and multifractal analysis of 

minimum–maximum temperature and solar radiation over Lagos State, Nigeria. Acta Geophysica, 

1-8. 

13. Li, Q., & Li, P. (2021). Intermittency study of global solar radiation under a tropical climate: case 

study on Reunion Island. Scientific Reports, 11(1), 1-16. 

14. Li, Q., & Li, P. (2021). Intermittency study of global solar radiation under a tropical climate: case 

study on Reunion Island. Scientific Reports, 11(1), 1-16. 

15. dos Santos Carstens, D. D., & da Cunha, S. K. (2019). Challenges and opportunities for the growth 

of solar photovoltaic energy in Brazil. Energy policy, 125, 396-404. 

16. Garlet, T. B., Ribeiro, J. L. D., de Souza Savian, F., & Siluk, J. C. M. (2019). Paths and barriers to 

the diffusion of distributed generation of photovoltaic energy in southern Brazil. Renewable and 

Sustainable Energy Reviews, 111, 157-169. 

17. Santos, A. J. L., & Lucena, A. F. (2021). Climate change impact on the technical-economic potential 

for solar photovoltaic energy in the residential sector: A case study for Brazil. Energy and Climate 

Change, 2, 100062. 

18. de Martino Jannuzzi, G., & de Melo, C. A. (2013). Grid-connected photovoltaic in Brazil: Policies 

and potential impacts for 2030. Energy for Sustainable Development, 17(1), 40-46. 

55



19. Zuluaga, C. F., Avila-Diaz, A., Justino, F. B., Martins, F. R., & Ceron, W. L. (2022). The climate 

change perspective of photovoltaic power potential in Brazil. Renewable Energy. 

20. Marchetti, I., & Rego, E. E. (2022). The impact of hourly pricing for renewable generation projects 

in Brazil. Renewable Energy, 189, 601-617. 

21. Mendes, H. A. (2021, October). On AutoMLs for Short-Term Solar Radiation Forecasting in 

Brazilian Northeast. In 2021 International Conference on Engineering and Emerging Technologies 

(ICEET) (pp. 1-6). IEEE. 

22. Medeiros, S. E. L., Nilo, P. F., Silva, L. P., Santos, C. A. C., Carvalho, M., & Abrahão, R. (2021). 

Influence of climatic variability on the electricity generation potential by renewable sources in the 

Brazilian semi-arid region. Journal of Arid Environments, 184, 104331. 

23. Tabarelli, M., Melo, M. D. V. C., & Lira, O. C. (2006). A Mata Atlântica do nordeste. Rio de Janeiro: 

MMA. 

24. Choi, Sun-Yong. Analysis of stock market efficiency during crisis periods in the US stock market: 

Differences between the global financial crisis and COVID-19 pandemic. Physica A: Statistical 

Mechanics and Its Applications, v. 574, p. 125988, 2021. 

25. Wang, Q., Yang, X., and L, R. The impact of the COVID-19 pandemic on the energy market–A 

comparative relationship between oil and coal. Energy Strategy Reviews, v. 39, p. 100761, 2022. 

26. Khan, K. et al. COVID-19 impact on multifractality of energy prices: Asymmetric multifractality 

analysis. Energy, v. 256, p. 124607, 2022. 

27. Sarker, A., and Mali, P. Detrended multifractal characterization of Indian rainfall records. Chaos, 

Solitons & Fractals, v. 151, p. 111297, 2021. 

28. Nascimento, K. K. F. do et al. COVID-19 influence over Brazilian agricultural commodities and 

dollar-real exchange. Fractals, v. 30, p.1-10, 2022. 

29. Akinsusi, J., Ogunjo, S., and Fuwape, I. Nonlinear dynamics and multifractal analysis of minimum–

maximum temperature and solar radiation over Lagos State, Nigeria. Acta Geophysica, p. 1-8, 2022. 

30. Kantelhardt, J. W. et al. Multifractal detrended fluctuation analysis of nonstationary time series. 

Physica A: Statistical Mechanics and its Applications, v. 316, n. 1-4, p. 87-114, 2002. 

31. Masoudi, M. (2021). Estimation of the spatial climate comfort distribution using tourism climate 

index (TCI) and inverse distance weighting (IDW) (case study: Fars Province, Iran). Arabian 

Journal of Geosciences, 14(5), 1-13. 

32. Reis, G., et al., (2022). Solar Ultraviolet Radiation Temporal Variability Analysis from 2-Year of 

Continuous Observation in an Amazonian City of Brazil. Atmosphere, 13(7), 1054. 

33. Laib M., Telesca L., Kanevski M. Mfdfa: multifractal detrended fluctuation analysis for time series 

(2017) R package version 01 0. 

34. dos Santos, F. S., do Nascimento, K. K. F., da Silva Jale, J., Stosic, T., Marinho, M. H., & Ferreira, 

T. A. (2021). Mixture distribution and multifractal analysis applied to wind speed in the Brazilian 

Northeast region. Chaos, Solitons & Fractals, 144, 110651. 

56



35.  Plocoste, T., & Pavón-Domínguez, P. (2020). Multifractal detrended cross-correlation analysis of 

wind speed and solar radiation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(11), 

113109. 

36.  de Albuquerque Wanderley, L. S., & Nóbrega, R. S. (2022). Desenvolvimento de um sistema de 

classificação climática com base na metodologia dos tipos sinóticos de tempo para a Região 

Nordeste do Brasil. GEOUSP Espaço e Tempo (Online), 26(1). 

37. Jardim, A. M. D. R. F., et al. (2021). Spatiotemporal climatic analysis in Pernambuco state, 

Northeast Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 223, 105733. 

38.  dos Santos Fernandes, É., & de Sousa Lopes, J. L. (2021). Natural disasters in the state of Alagoas 

northeast region of BRAZIL-arising from the climate events in La NIÑA. International Journal 

Semiarid, 4(4). 

39. ABSOLAR (Associação Brasileira de Energia Solar Fotovoltaica). Accessed on 2022-09-12; URL 

https://www.absolar.org.br/noticia/energia-solar-brasil-ultrapassa-marca-historica-de-16-gw/.  

 

 

 

57



58

Chapter 5



59



60



61



State Geographic Location

Braziil

Brazil Altitude (m)

 Brazil Altitude

South America

Geographic location

62



63



64



65



1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

2

3

4

5

6

Wind Speed

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

2

3

4

5

6

Wind Speed

66



1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

0.5

0.6

0.7

0.8

0.9

1.0

Wind Speed

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

0.6

0.7

0.8

0.9

1.0

Wind Speed

67



68



1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

3

6

9

Wind Speed

a)

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

5

10

15

20

Wind Speed

b)

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

2.5

5.0

7.5

10.0

Wind Speed

c)

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

5

10

15

20

Wind Speed

d)

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

0.25

0.50

0.75

Wind Speed

e)

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

0.25

0.50

0.75

Wind Speed

f)

69



70



1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

500

1000

1500

2000

2500

Wind Speed

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

1000

2000

3000

4000

Wind Speed

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

500

1000

1500

2000

Wind Speed

1000 km

N

30 S

20 S

10 S

 0

70 W 60 W 50 W 40 W 30 W

Longitude

1000

2000

3000

4000

5000

Wind Speed

71



72



73



74



75



30 S

25 S

20 S

15 S

10 S

 5 S

 0

 5 N

70 W 60 W 50 W 40 W

10

15

20

25

air − 273
Wind speed direction

76



77



78



79



80



81



82

General Conclusions

Through the analysis performed, it was possible to identify the areas favorable
to installing wind farms and installing solar panels in Brazil. The results were obtained
using the Multifractal Detrended Fluctuation Analysis methods and the mixtures of
probability distributions, such as the Weibull-Weibull mixture. In the adjustment of the
mixture models, the methods of parameter optimization were used: Moments’ Method,
Maximum Likelihood Method, Expectation-Maximization Algorithm, and the Particle
Swarm Optimization artificial intelligence algorithm. Based on these methods, the best
model fitting the study series of observations was defined. In addition, the parameters of
the models were estimated to identify areas conducive to installing wind and solar farms
in Brazilian regions. Based on the Inverse Distance Weighting method, it was possible to
predict the most accurate behavior of wind speed and solar radiation where there was no
a priori information.

With the inclusion of the methods adopted, it was found that in Brazil, in regions
such as the Northeast of the country, the production of energy from renewable and clean
sources can be about four times higher than in the North region, for example. Therefore,
it is possible to distribute all the surplus energy generated to the North, if this region at
some point will need it. The same situation was observed in the Southern region, where
this region can distribute its surplus energy to the Southeast and Midwest regions and sell
its surpluses to countries bordering the region, such as Argentina, Uruguay, and Paraguay.

Finally, through this research, new proposals for future work are using the Random
Forest algorithm and Artificial Neural Networks to estimate wind speed at different heights
based on the existing series and taking into account the geography of each locality. This
proposal is necessary for the continuity of this research and may generate an even more
accurate range of results compared to those in this research. After using the proposed
methods, it’s significant to use neural networks to predict the potential of wind power
generation and distribution throughout Brazil. In this way, it creates the distribution map
of surplus renewable energies in the country.
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