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Abstract

In the globalized world, there is always the need for new investments in energy sources to
meet all the demands, not only industrial but also population ones. In a world where we
already have more than 8 billion inhabitants, there is a very great demand for energy for
the daily needs of the population, for example. In addition to the need for energy, one
concern is rising temperatures on earth. For this reason, countries have been trying at all
costs to reduce the global average temperature of the earth by 2°C. For this goal to be
achieved, many countries are investing in renewable energy sources as one of the ways
to contribute these reductions in greenhouse gases in the atmosphere which is one of the
causes of global warming. For this reason, in November 2021, in Glasgow, Scotland, the
Brazil it committed by the year 2030 to reduce its greenhouse gas emissions by around
50%, with investments in clean and renewable energy. In Brazil, the energy sources that
can contribute to the country achieving this established goal are wind and solar power.
From this perspective, one of our objectives in this work was to understand and analyze
the persistence and mixtures of probability distributions, through statistical, numerical,
and artificial intelligence methods to estimate the potential of wind and solar power
generation. For this, mixtures of probability distributions, and the Multifractal Detrended
Fluctuation Analysis-MFDFA Method are used in the modeling of the series. In addition,
the geographic spatialization of the potential of wind velocity values was performed, and
it was observed that for those velocities that are above 3.0m/s, the higher the height, the
greater the occurrence of these observations of velocities above this threshold. Among the
five Brazilian regions (North, Northeast, South, Southeast and Midwest), it is observed
that the Northeast region has higher potential for wind power generation. The region also
showed good results for the installation of solar panels. Wind and solar energy sources
are important for generating clean and renewable energy across the country and can be
considered complementary sources. It is expected that this research will be able to assist
public agencies in decision-making about investments in renewable energies, in particular,
in the wind and solar energy sources. It is important to highlight that investments in
wind and solar energy are needed in Brazil and around the world due to the growing
need to replace conventional and non-renewable energy sources with renewable and clean

alternatives.

Keywords: Wind energy, Solar energy, Renewable sources, probability distribution,
MFDFA.



Resumo

No mundo globalizado ha sempre a necessidade de novos investimentos em fontes de
energia para atender todas as demandas nao sé industriais, mas também populacionais.
Em um mundo com uma populacao de mais de 8 bilhoes de habitantes, ha uma demanda
muito grande de energia para as necessidades diarias da populacao, por exemplo. Além da
necessidade de energia, uma preocupagao ¢ o aumento das temperaturas na Terra. Por esta
razao, os paises tém tentado a todo custo reduzir a temperatura média global da Terra
em 2°C. Para que esse objetivo seja alcancado, muitos paises estao investindo em fontes
renovaveis de energia como uma das formas de contribuir com essas redugoes dos gases
de efeito estufa na atmosfera que é uma das causas do aquecimento global. Por isso, em
novembro de 2021, em Glasgow, na Escécia, o Brasil se comprometeu até o ano de 2030 a
reduzir suas emissoes de gases de efeito estufa em cerca de 50%, com investimentos em
energia limpa e renovavel. No Brasil, as fontes de energia que podem contribuir para que o
pais alcance essa meta estabelecida sao a energia edlica e a solar. Nessa perspectiva, um
de nossos objetivos neste trabalho foi entender e analisar a persisténcia e as misturas de
distribuicao de probabilidade por meio de métodos estatisticos, numéricos e de inteligéncia
artificial para estimar o potencial de geracao de energia edlica e solar. Para isso, misturas
de distribuicoes de probabilidade e o Método Multifractal Detrended Fluctuation Analysis
(MFDFA) sao utilizados na modelagem das séries. Além disso, foi realizada a espacializa¢ao
geografica dos valores potenciais de velocidade do vento e observou-se que para aquelas
velocidades acima de 3,0m/s, quanto maior a altura, maior a ocorréncia dessas observacoes
de velocidades acima desse limiar. Dentre as cinco regioes brasileiras (Norte, Nordeste, Sul,
Sudeste e Centro-Oeste), observa-se que a regiao Nordeste apresenta maior potencial de
geracao edlica. A regidao também apresentou bons resultados para a instalacao de paineis
solares. As fontes de energia edlica e solar sdo importantes para a geracao de energia limpa
e renovavel em todo o pais e podem ser consideradas fontes complementares. Espera-se que
esta pesquisa possa auxiliar os 6rgaos publicos na tomada de decisdes sobre investimentos
em energias renovaveis, em especial, nas fontes de energia eélica e solar. E importante
destacar que investimentos em energia eélica e solar sao necessarios no Brasil e no mundo
devido a crescente necessidade de substituicao de fontes de energia convencionais e nao

renovaveis por alternativas renovaveis e limpas.

Palavras-chaves: Energia edlica, Energia solar, Fontes renovaveis, distribuicao de proba-
bilidade, MFDFA.
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Chapter 1

Introduction

Wind speed and solar radiation are complex and nonlinear variables, which require
effort for their modeling. Nevertheless, in recent years, several studies have been carried
out seeking a way to use winds and radiation in the generation of wind and solar energy,
since these are energy sources considered clean and inexhaustible. Another reason for the
generation of this type of energy refers to the growth of the world population, with the
need for greater energy consumption and replacement of conventional energy matrices,
such as those from the water forces that remains as the main energy source (ABEEOLICA,
2019a), by renewable sources. Moreover, unlike that achieved with fossil fuels, the energy
produced by the winds does not pollute the environment (CAMELO et al., 2015) and can

contribute to the decrease in global warming, one of the major global concerns.

In Brazil, only the Midwest and the North regions do not produce wind power.
The Northeast region has stood out as the main producer of wind energy, followed by the
southern region of the country. The winds of the Northeast have been favorable to this end,
as this region is benefited by the trade winds of the South Atlantic, characterized as strong,
stable, and coming from the same direction in much of the time (ABEEOLICA, 2019b).
With the winds considered the strongest in the world, the Northeast broke three records
in August 2019, managing to produce 89% of all energy consumed in the region in this
period (ONS, 2019). The dry period in the Northeast region of Brazil occurs in the second
half of the year, leaving water reservoirs scarcer to produce energy in hydroelectric plants.
However, in this period the most intense winds of the year occur, offsetting consumers

with wind energy in full production.

The intense use of wind for wind power generation is justified by the number
of wind farms installed: more than 600 in Brazil, with a total of more than 7000 wind
turbines, producing around 15 GW of wind power. By 2024 the country is expected to
have a production of approximately 20 GW of power (ABEEOLICA, 2019a). However,
it is recognized the need to check the average speed of winds before the installation of

a wind power plant, because the irregularity or scarcity of wind over long periods can



cause damage in the maintenance of a wind turbine. It should be noted that the minimum
speed required to generate wind power is around 3.1 m/s. Values below this average make
it impossible to install the parks since wind turbines would produce only enough energy
for their own operation (SANTOS et al., 2021).

Several mathematical models and computational tools help to understand wind
behavior (NEDAEI; ASSAREH; WALSH, 2018), such as probabilistic models Weibull
(DEEP et al., 2020; SUMAIR et al., 2020; GUARIENTT et al., 2020; ARSLAN et al.,
2020)), Rayleigh (SERBAN; PARASCHIV; PARASCHIV, 2020; CHIODO; NOIA, 2020;
GORLA; PALLIKONDA; WALUNJ, 2020), and Gamma (OZKAN; SEN; BALLI, 2020;
NADIA et al., 2020) in addition to the mixtures of Weibull-Gamma and Weibull-Normal
truncated probability distributions, for example (MIAO et al., 2019). Given the excellent
results obtained with mixtures of distributions to the historical series of wind speed with
bimodality or multimodality behavior, it is chosen to use these combinations of probability
distributions in the adjustment of distributions to be performed with this thesis. Seeking
to minimize the estimation error associated with the estimated data in relation to the
real ones, it is proposed the use of optimization algorithms, such as Particle Swarm
Optimization (CARNEIRO et al., 2016) and the Expectation-Maximization numerical
method (BRACALE; CARPINELLI; FALCO, 2017). Being chosen the best distribution
for modeling the database, the next step was to calculate the wind power density for
each historical series and then interpolate the wind potential throughout Brazil. Based on
interpolation it is possible to know the potential of wind generation in places where you do
not have information from the actual information of each weather station, creating a wind
map of the country at six different heights of wind speed. The wind heights studied were
10m, 25m, 50m, 75m, 100m, and 120m. In addition, although there are several models of
probability distributions for wind speed estimation, in this work we used the Multifractal
Detrended Fluctuation Analysis (MFDFA) model to analyze the persistence existing in

wind speed series over the years.

The MFDFA method, in addition to the application in wind speed series, was also
used in hourly time series of solar radiation in the Northeast region of Brazil. This study
can be considered one of the pioneering studies in the country, taking into account, mainly,
the large number of meteorological stations that were used in the research. Some studies
already done with solar radiation in northeastern Brazil were: Silva et al. (2010), which
analyzed reanalysis data at two stations in the Northeast region and used cluster analysis
in the data. Andrade e Tiba (2016), made a detailed analysis of terrestrial measurements of
global solar irradiation, in eight meteorological stations in northeastern Brazil, which are,
Agua Branca, Santana do Ipanema, Palmeira dos Indios, Laje, Pdo de Acticar, Arapiraca,

Coruripe, and Maceié. Lima, Ferreira e Morais (2017) analyzed the performance of a



photovoltaic system connected to an existing power distribution network in northeastern
Brazil. In our research, 137 meteorological stations distributed in the nine states of the
Northeast region of Brazil were studied, using the Multifractal Detrended Fluctuation
Analysis (MFDFA) methodology. After the estimates of the multifractality parameters,
we performed the parameters estimation where no information on solar radiation was

available using the Inverse Distance Weighting (IDW) interpolation method.

This method has been widely used in modeling different phenomena of science,
such as in the financial market (CHOROWSKI; STRUZIK, 2021; XIAO; WANG, 2021),
agricultural commodities market (NASCIMENTO et al., 2022), diseases such as COVID-19
(KHAN et al., 2022), energy market (ALI; ASLAM; FERREIRA, 2021), the efficiency
of the electricity market during the COVID-19 pandemic (NAEEM et al., 2022) and
climatology (ZHANG et al., 2021). In the application of solar radiation series, studies
such as (MADANCHI et al., 2017) analyzed solar radiation in some locations distributed
worldwide using the MFDFA method. In Brazil, until where it was researched, we did not

find studies using the MFDFA method applied to hourly series of solar radiation.

Finally, through this research, it was possible to understand the behavior of the
wind speed and solar radiation series to help in the predictive capacity of wind and
solar power generation. For example, if the wind speed in a given location is below
3.1m/s, an aerogenerator will not produce enough power to power the subsystems of power
distributions. Based on the predictive results obtained with the time series of wind speed
and solar radiation, it is possible to outline investment strategies for the implementation
of wind and solar farms that are promising for investors. This contributes to the reduction
of costs in the implementation, generation, and distribution of energy in all Brazilian
regions, thus cooperating so that Brazil achieves self-sufficiency in the generation of clean

and inexhaustible energy in the future.

Objectives

General Objective

The objective of this thesis was to understand and analyze the persistence and mix-
tures of probability distributions, through statistical, numerical, and artificial intelligence

methods to estimate the potential of wind and solar power generation in Brazilian data.



Specific Objectives

For the overall objective to be achieved, the specific objectives were:

o To analyze the spatial trend of wind speed in northeastern Brazil and multifractal pa-
rameters using the Inverse Distance Weighting method, to provide useful information

in the selection of regions with wind potential,

o Compare several mixtures of probability distributions using statistical, numerical,

and artificial intelligence methods in wind speed series in Petrolina-PE, Brazil,

« To verify multifractality properties existing in solar radiation series in northeastern

Brazil;

« Estimate the density of wind potential in the five Brazilian regions from the mixture

of probability distributions.

Scientific Questions

Four main questions address this thesis:

1. Can understanding the behavior of hourly wind speed contribute to the identification

of possible locations for the installation of wind farms?

To answer this question, in the first article, we applied the Multifractal Detrended
Fluctuation Analysis method and the Weibull-Weibull probability distribution mix-
ture to analyze the behavior of wind speed series in the nine regions of northeastern
Brazil. The results showed that the wind speed series indicated persistent behavior
in all meteorological stations and the Weibull-Weibull mixture achieved good adjust-
ments to the hourly series with bimodal behavior. The Expectation Maximization
algorithm was used to estimate the Weibull parameters. From this, we used the
Inverse Distance Weighting method to estimate wind speed behavior information
where no a priori information was yet available. Based on this information, investors
and public agencies can make their decisions to install wind farms in certain locations

or not.

2. Through statistical methods and artificial intelligence, what better combination
of mixtures of probability distributions to adjust wind speed at the Petrolina-PE

weather station in the Northeast region of Brazil?

To answer this question, in the second article we compared several methods of

mixtures of probability distributions in the adjustment of bimodal series of wind



speed in Petrolina-PE, Northeastern Brazil. To estimate the parameters of the
mixing models, the optimization methods were used: Moment Method, Maximum
likelihood method, and the artificial intelligence method Particle Swarm Optimization
algorithm-PSO. Based on the results, the best model that adjusted to the data was
the LogNormal-Weibull distribution mixture via PSO.

3. Do the solar radiation series in the Northeast region of Brazil present persistent

behavior?

To answer this question, in the third article, we applied the Multifractal Detrended
Fluctuation AnalysissMFDFA method in the modeling of solar radiation series
throughout the Brazilian Northeast region. We observed that all weather stations
presented persistent behavior in the solar radiation series. This fact indicates that

radiation series over time do not present significant changes in their behavior.

4. Would it be possible to distribute the surplus of wind energy produced in a given

region of Brazil to other regions with low energy production?

To answer this question, in the fourth article we used the Weibull-Weibull distribution
mixing model to adjust the wind speed series throughout Brazil. The Expectation-
Maximization method was used to estimate the parameters. After estimating the
parameters of the mixing model, wind power density was calculated. Based on the
results, it was possible to notice that in regions such as the Northeast, wind power
density is four times higher than in the North region. In this case, the Northeast
could easily distribute its surplus of production to the North region if it needs to.
The same thing was observed in the southern region of the country, where this region
could also distribute its surplus to the Southeast and Midwest regions, in addition

to selling to countries that border the region.

Thesis Structure

The structure of this thesis consists of five chapters described below:

Chapter 1 — Introduction: A brief general introduction of the modeling and
analysis of wind speed and solar radiation series, presentation of the general and specific

objective of the thesis, and the main questions that guided this research;

Chapter 2 — Mixture distribution and multifractal analysis applied to wind speed

in the Brazilian Northeast region. Article published in Chaos, Solitons and Fractals;



Chapter 3 — Comparison of methods and distribution models for the modeling of
wind speed data in the municipality of Petrolina, Northeast Brazil. Article published in

Research, Society and Development;

Chapter 4 — Multifractal analysis of solar radiation in the northeastern region of

Brazil. Article accepted for publication in Fractals;

Chapter 5 — Prediction of wind energy generation potential in Brazil using

mixtures of Weibull distributions. Article to be submitted for evaluation in Energy.

General Conclusions - Main conclusions of this thesis and possible future work.
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The growing investments and installations of wind farms in the Brazilian Northeast have drawn atten-
tion to the region, leading investors and researchers to seek better ways of using the local wind regimen
for energy production. In face of the complex behavior of wind speed time series, mixture distribution
models have been applied to bimodal databases aiming at achieving the best modeling for series fitting.
This paper used data from stations located in the nine states that make up the Brazilian Northeast re-
gion (Maranhdo, Piaui, Ceard, Rio Grande do Norte, Paraiba, Pernambuco, Alagoas, Sergipe, and Bahia)
between January 1st, 2004 and August 29th, 2018. The two-component Weibull distribution model was
employed to model the historical series using the Expectation Maximization (EM) algorithm to search for
optimal parameters in data distribution. Multifractal detrended fluctuation analysis was applied to verify
series persistence over time and, using spatialization obtained with inverse distance weighting, the re-
sults were estimated at the sites lacking meteorological wind information. The results obtained indicate
that the highest mean wind speeds are found in the states of Rio Grande do Norte, Paraiba, and Pernam-
buco, whereas the lowest occur in parts of Bahia, Piaui, and Maranhdo. The highest mean wind speeds
were recorded between 10 a.m. and 8 p.m. of each day at every station. Multifractal analysis revealed
that wind speed series exhibit persistent overall behavior for all stations, with multifractality dominated
by small fluctuations. For most of the stations both long term correlations and broad probability density
function of wind speed values are found to cause multifractality of the process. This study allows iden-
tifying favorable areas for the installation of wind farms in different locations of the Brazilian Northeast
region.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

for population consumption, particularly during periods of drought,
as was the case during the extended dry spell in 2013 in the Brazil-

Viable installation of a wind farm requires investigations on the
conditions of the region considered promising for energy genera-
tion, such as its topography, temperature, and humidity. Since they
can be strongly impacted by local terrain, wind characteristics such
as direction and gust speed are essential for deciding the position
of wind turbines and optimal use of wind power. Particularly, prior
investigation on mean wind speed is key to verify whether invest-
ments at the site are suitable. The use of wind energy may reduce
the dependence on hydroelectric generation, the main source of
electricity in Brazil [1]. Such replacement means water can be used

* Corresponding author.
E-mail address: fabio.sandropb@gmail.com (F.S.d. Santos).

https://doi.org/10.1016/j.chaos.2021.110651
0960-0779/© 2021 Elsevier Ltd. All rights reserved.

ian northeast. At the time, the volume of the biggest artificial lake
of the world, the hydroelectric Sobradinho reservoir was greatly re-
duced and wind power was an alternative adopted to keep water
from being used for energy generation. This initiative was respon-
sible for supplying on average 30% of the energy consumed in the
region by using a clean and limitless source [2]. In 2019, during
some periods of August, the good winds of the Northeast were able
to supply a record 89% of the regional energy generation [3].

In this sense, statistical tools have been adopted to help deter-
mine possible sites for the installation of wind farms, such as the
probability distribution models. These models were employed to
fit historical wind speed series in China [4], India [5], Iran [6], Iraq
[7], Morocco [8], Nepal [9], Nigeria [10], Rwanda [11], Switzerland
[12], and United States [13]. Among the several available models,
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Fig. 1. Geographic distributions of stations distributed throughout the nine states of the Brazilian Northeast region and altitudes in the locality.

mixtures distribution have been standing out for their capacity of
modeling bimodal databases [14], as in the case of wind data in
Sri Lanka for which mixture Weibull distribution performed better
than Lognormal, Gamma, Gamma and Weibull mixture, and Log-
normal and Weibull mixture distributions, for example [15]. Shin
et al. [16] applied twelve models of probability distributions, of
which ten were mixtures of distributions, on wind speed data from
the United Arab Emirates. Through the adjustments made with the
Least Squares, Maximum Likelihood and Expectation Maximization
methods, the results showed that the distribution mixtures pro-
vided the best adjustments to all analyzed data [16].

Another relevant piece of information on appropriate regions
for the installation of wind farms is the persistence of wind reg-
imens, i.e., whether the wind behavior repeats over time. Such
knowledge can be acquired using multifractal analysis. The multi-
fractal detrended fluctuation analysis methodology is employed in
different scientific fields, such as to analyze the concentration of
air pollutants [17], rainfall data [18], and wind speed series [12,19].
Laib et al. (2018) examined a wind speed monitoring system in
Switzerland using correlation networks. In the study, stations are
seen as nodes on the network and the application of MFDFA is
made on the density of connectivity [20]. Telesca and Lovallo
[21] analyzed wind speed series in Italy at seven different heights
and observed through the MFDFA that there is a dependence be-
tween wind sensor height and the multifractal fluctuations present
in wind speed. These results were consistent with those obtained
through the Fisher-Shannon method [21]. Balkissoon et al. [22] in-
vestigated fractal and multifractal characteristics in wind speeds
observed in the towers of three sites in Missouri. The authors stud-
ied Hurst's exponent in the monofractals series, using Rescaled
Analysis and in the multifractal series using MFDFA. The results
showed that the fractal dimensions of monofractals series are
smaller to those found with multifractal analysis [22].

With that in mind, the present research analyzed wind speed
databases in the Brazilian Northeast region aiming to verify the
behavior of those series. The Weibull distribution model with five
parameters was fitted to the data and after that, was checked
whether they exhibit persistence over time. These investigations on
the stochastic behavior of wind may contribute to estimating the
wind power generation potential in the states of the Northeast re-
gion and assess whether said generation can be constant over time.
Up to date, we are not aware that studies like this have been con-
ducted in Brazil, considering the entire wind speed database of the
Northeast region of Brazil (corresponding to more than 120,000 h
of observations from 136 automatic stations). Previous studies have
investigated only certain isolated regions and smaller time inter-
vals or fewer stations. For example, Santos et al. [23] verify the ex-
istence of long-range correlations in some regions of Bahia, in a pe-
riod of 60 days (January and February 2016). Rocha et al. [24] eval-
uated seven numerical methods in the adjustment of the Weibull
distribution in the cities of Camocim and Paracuru in Ceard, from
2004 to 2006. Torres Silva dos Santos e Silva [25] analyzed lin-
ear trends, seasonality and interannual variability of wind speed
recorded at 47 meteorological station for the period from 1986 to
2011.

Another important contribution of our work is the presentation
of the spatial trend of wind speed in the Brazilian Northeast and
the multifractal parameters through geostatistical techniques (via
Inverse Distance Weighting), with the objective to provide useful
information for the selection of regions with wind potential. We
use Inverse Distance Weighting because it is a simple, fast and ap-
propriate method when working with many observations [26]. It
is a method commonly used in climate variable analysis [27], in-
cluding wind speed time series. Considering that this study was
carried out with methods already well consolidated in the liter-
ature and with data from Brazil, in particular from the Brazilian
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Northeast region, other researchers can replicate the ideas adopted
here to identify areas favorable to the installation of wind farms in
other countries and thereby foster their economies, ensuring de-
velopment and progress in different socioeconomic sectors.

The remainder of this paper is structured as follows.
Section 2 presents the data used and the description of each
methodology employed. Section 3 exhibits the results reached and
discussions. Section 4 presents the main conclusions obtained.

2. Materials and methods
2.1. Data

The database used in the present study was obtained from the
National Institute of Meteorology (INMET) with hourly measure-
ments in m/s between January 1st, 2004 to September 29th, 2018,
comprising over 120 thousand hours of wind speed observations.
Such observations correspond to the information collected from
136 meteorological stations scattered across the Northeast region
of Brazil, as shown in Fig. 1.

The area under study comprehends approximately
1,561,177.8 km?2, equivalent to 18.3% of the Brazilian territory,
and comprises nine states (Maranhdo (MA), Piaui (PI), Ceara (CE),
Rio Grande do Norte (RN), Paraiba (PB), Pernambuco (PE), Alagoas
(AL), Sergipe (SE) and Bahia (BA)) holding a total population
estimated at 53,081,950 inhabitants. Mean annual wind speed in
the region measured at a height of 10 m lies between 0.5 and
5.5 m/s [25].

2.2. Mixture of two Weibull distributions models

The complex non-linear behavior of wind speed series
[28] makes it difficult to specify an optimal distribution that com-
prehensively models those series [29,30]. However, mixtures distri-
butions have been a successful option as they tend to exhibit good
fits to the frequencies observed.

A mixture of distributions can be obtained from the linear
composition of two or more probability density functions (pdf).
Eq. (1) expresses the mathematical formulation of a mixed distri-
bution [14]

d
f:p1.....04.01.....04) =Zpifi(v§ ;).

i=1

(1)

where d is the number of components and p; are the weights of
each mixture so that p; + p; +...+ pg = 1, 6; are the parameters
of the ith distribution and f;(v; ;) are the independent distribu-
tions of the ith components.

Particularly when proposing the combination of two Weibull
distribution models, one with two parameters and the other with
three, the expression seen in Eq. (2) is obtained [31],

s om0 ()]

ay (v \% ! v \*
o) ()]
"5\ B, B

where v is the mean hourly wind speed (in m/s) above zero, p;
and p; =1— p; are the weights assigned to the distribution, o
and o, are shape parameters, and B; and B, are scale parame-
ters. This model is known as five-parameter Weibull distribution
(Weibull-Weibull).

(2)

2.3. Expectation maximization algorithm

Choosing the optimal method for parameter estimation may
prevent convergence issues and ensures lower risk of false esti-
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Fig. 2. Average (a) and standard deviation (b) of the hourly average wind speed in
Northeast Brazil, in the period from 2004-01-01 to 2018-09-29.

mates. The Expectation Maximization (EM) algorithm is an itera-
tive method used to estimate parameters based on an approach
with maximum likelihood [32]. The EM algorithm has been suc-
cessfully applied to models of mixtures distribution [33].

In order to maximize a function given by

g©) =1og( ), ).

where 07 = (64, ..., On) € R}, g can be minorized in ¥ € R} by a
Jensens inequality minorizer [34], such as

(3)

12

n n
QO ¥) =) T(y)log(6) — Y w(Y)logni (), (4)
i=1 i=1
where 7;() = ¥/ Y} V).
Given Sp = {sT = (51,....5) : 5; = 0 for every i e [n], ¥, 5; = 1},
where ()7 is the transposition operator and [n] =1....,n, the ex-

pression in Eq. (5) is obtained by applying Eq. (4) to the likelihood
ratio at the rth iteration of the algorithm.

d
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With a solution vector a* € S;, where VQ(a*; o™ 1) =0, the
rth iteration can be found. That yields solution a*" = (oF....,a0),
where af = § 31 7i(x:@'"). @ = a* defines the algorithm at
each iteration r € N until some stopping criterion is reached, such
as the maximum number of iterations. The final iteration is then
said to be the maximum likelihood estimator (MLE) @y.

(o) =

2.4. Multifractal detrended fluctuation analysis

Multifractal Detrended Fluctuation Analysis (MFDFA) method
was originally proposed in 2002 with the aim to detect multifrac-
tality in non-stationary time series [35]. In recent years MFDFA has
been widely applied in different types of phenomena such as me-
teorological time series [36], air temperature [37], finances [38-41],
oxygen in earths early atmosphere [42], air traffic flow [43], forest
fires [44] and wind speed [45]. The implementation of the MFDFA
method consists of five steps [35]:

Step 1: Integrate the time series x; forming a new series Y (k) =
Z?':] [x; — X]. where X is the average value of x; and k=1,...,N.
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Fig. 5. Weibull-Weibull distribution adjustments using the expectation maximiza-
tion algorithm to the series of hourly average wind speeds in Petrolina and Recife,
Pernambuco.

Step 2: Divide the series Y, into Ns = int(N/s) non-overlapping
segments of equal length s, starting the divisions on each of the
two ends of the series and obtaining 2N; segments.

Step 3: Determine local trend for each of the 2N; segments us-
ing polynomial fit of degree m and calculate the corresponding
variance using Egs. (6) and (7).

2 g . 42
Fw.s)= 23 {Y[w=Ds+il -y}

i=1

v=1,2,...,Ng

(6)

and

S
F2(v, S)E% > {Y[N=(u=No)s+il-y, (i)}, para v=Ns+1. ... 2N
i=1
(7
where y,(i) is the fitting polynomial in segment v.
Step 4: Calculate the average of F2(v;s) over all segments and
determine the fluctuation function according to the following ex-
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pression.

1

2N;

R = o 3 [Fas)] L
S u=1

where, in general, the index q € R*.

Step 5: Repeat the calculation of fluctuation function F;(s) for
all segment sizes. If long-term correlations are present in orig-
inal series x;, F;(s) will increase with s according to a power
law F;(s) ~ sh@_ For q = 0, h(0) = lim,_ oh(q) is determined by
means of the expression below.

(8)

2N

Fy(s) = exp % > In[F(v,9)]t ~s"© (9)
S v=1

For multifractal series h(q) depends on q and decreases while
q increases. On the other hand, when h(q) does not depend on
q the original series is a mono-fractal. For negative values of g,
h(q) characterizes the scaling behavior of subsets of the series with
small fluctuations, while for positive values of g, h(q) characterizes
the scaling behavior of subsets with large fluctuations [35]. Multi-
fractality of time series can also be characterized by Rényi’s expo-
nent [44]:

T(q) = gqhg—1 (10)

which is linear function for monofractal series and nonlinear func-
tion for multifractal series. More information about multifractality
can be obtained from multifractal spectrum which is defined as

fla) =q(e-h(@) +1, (11)
where

_ dh(q)
oth(q)+q—dq , (12)

is the Holder exponent and f(w) is the dimension of the subset of
the series that is characterized by the exponent «.

Graphically, a multifractal series is described by a concave down
f(a) curve where the maximum point indicates the value of the
overall Hurst exponent. For monofractals series the singularity
spectrum is represented by only one point [46].

After a polynomial fitting of f(«), the complexity of the mul-
tifractal process can be described with the aid of the parameters
presented below [47].

o Position of the maximum of the spectrum (o) - represents the
overall Hurst exponent. If og < 0.5 the series is said to be anti-
persistent, if «g > 0.5 the series is persistent and if «g = 0.5
the series is said to be random;

Asymmetry (r) - obtained by the expression r= %
where omax and o, are the two zero-crossings of the fitting
polynomial. If r = 1 the f(«) spectrum is symmetric, indicating
that both subsets with small and large fluctuations contribute
equally to multifractality of process. If r < 1 there is asymme-
try to the left and subsets with large fluctuations are dominant
in multifractality of the process. The values r > 1 indicate the
asymmetry to the right and the dominance of small fluctua-
tions.

Spectrum width (w) - given by W = ¢max — O¢mj,. [t measures
the degree of multifractality: the greater the width of the spec-
trum, the stronger the multifractality present in the process.

A time series can exhibit two types of multifractality:

. Multfractality from a broad probability density function of the
series.

i. Multifractality from different long-range correlations for small

and large fluctuations.
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Fig. 6. Weibull-Weibull estimated parameters using the iterative expectation maximization method for the 136 weather stations analyzed.

Series randomization is recommended as an aid to identify
the causes of multifractality in the process. After randomization
the long term correlations are destroyed while probability den-
sity function is preserved. This leads to the loss of multifractality
(f(a) spectrum is significantly reduced) for multifractals of type
(ii) while for multifractals of type (i) f(«) spectrum remains the
same. When both types of multifractality are present, the shuffled
series shows weaker multifractality than the original series [35].

2.5. Inverse distance weighting

Among the interpolation methods available, Inverse Distance
Weighting (IDW) has stood out since it does not require subjective
conjectures or pre-modeling, besides being relatively simple to im-
plement [48]. Originally, IDW was proposed aiming to solve bidi-
mensional problems. However, it was later adapted to solve multi-
dimensional problems [49].

It is based on the principle that the closer the estimated value
of the actual value is, the greater its influence will be on predicted
values of more distant ones. The mathematical equation of IDW

can be expressed as [50]
N —
Yini Z(u)dg?
N —
Yisidyf
where ug is an estimate, u; are real points, da? is the weight, d
is the Euclidian distance between the values estimated and each

station and p is the exponential power parameter. In general, p =
2.

Z(up) = . i=1,....N, (13)

3. Results and discussion

Based on the descriptive statistics of average and standard de-
viation of the 136 meteorological stations studied, the information
was spatialized to the entire Brazilian Northeast region using the
IDW method. Fig. 2 shows the plot obtained. The highest mean
wind speeds were found on the coast of Rio Grande do Norte (RN)
and at the stations of Areia-PB, Uaud-BA, and Guanambi-BA (in
yellow). A comparison of the states revealed that the mean wind
speeds in RN, PB, and PE were higher than in the other states. In
PI, the fifth largest producer of wind power in Brazil by late 2018
[51], the highest mean wind speeds are found in the north and
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Fig. 10. Comparison of the values of the parameters &yrigi (blue) and oqnq (red) for the wind speed series of the entire Brazilian Northeast region. (For interpretation of the
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southeast portions of the state. In SE and AL, the averages largely
ranged from 2.0 to 3.2 m/s.

On the other hand, in MA, the highest wind speeds were con-
centrated in the northeast coast of the state. Likely due to its
proximity with the Amazon forest, the remainder of that state
had mean speeds below 3.0 m/s, which is insufficient to intercon-
nect the energy generation sub-systems. It was also found that the
closer a site is to the equator, the higher the mean wind speed in
the region, except when they are very close to the Amazon region.
The standard deviation in the series indicate that the lowest data
variability is found in MA, in southern BA, and center-north PI (see
Fig. 2b).

In Fig. 3, we show the behaviors of all series of observations
via boxplot, in which we visualize the variability of the data be-
tween the meteorological stations and the median value of wind
speed (the numerical identification of each station can be found
in Table 2 of the Appendix). Station 1 of Bahia (Abrolhos) pre-
sented a higher median than the other stations in the state. Like,
station 3 of Rio Grande do Norte (Calcanhar) presented a higher
median value among the other seasons. Overall, observing the en-
tire Northeast region of Brazil, these two seasons were the only
ones with medians above 5 m/s.

Fig. 4 presents the results of the boxplot for wind speed data
over the 24 h of each day observed at the Petrolina and Recife sta-
tions, both located in PE. Overall, starting at 10 a.m. of each day,
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Fig. 14. On the left, parameter w of the original series and on the right, w of the randomized series in Northeast of Brazil.

the mean wind speed at the stations begins ramping up and, al-
though values ramp down in the afternoon, the mean wind speed
is higher until 8 p.m. than at other times. The variability in the se-
ries, assessed from their standard deviations (represented by blue
dots in the plots), remained nearly constant over time and exhib-
ited only slight oscillations. That shows electricity production from
wind power may be best done between 10 a.m. and 8 p.m. of the
days investigated. That was identified at all 136 meteorological sta-
tions, which featured different geographic conditions and climate
characteristics. Likewise, the relationship between wind speed and
temperature was explored in other studies, such as the peaks in
temperature and cyclical components observed at different sites in
Switzerland and China at different times of day [12,52,53].
Histograms were generated for all series studied and the
Weibull-Weibull distribution, resulting from the mixture of a
Weibull(ety, B1) distribution and a Weibull(et, B8;) distributions,
with weight p fitted. An example of the results obtained is seen
in Fig. 5 for the data of meteorological stations in Petrolina-PE
and Recife-PE. It was found that the distribution adopted for the
fit successfully modeled both unimodal and bimodal series. Simi-

lar results using the Weibull-Weibull distribution model were re-
ported in other works [15,54]. The minimum and maximum val-
ues of shape parameters («q, a>), scale parameters (3, B,), and
weights p; and p, obtained for each state of the Northeast region
are shown in Table 1. The estimates of those values were obtained
using the EM algorithm. Table 2 in the Appendix presents more
details of the parameters estimates of the Weibull-Weibull distri-
bution per meteorological station studied.

We collected new data to validate the study and adjusted the
Weibull-Weibull distribution to the test series. We built a confi-
dence interval at the significance level of 5% for the difference be-
tween the probability density functions of the training and test se-
ries. For example, for Petrolina-PE, the confidence interval [0.0015;
0.0107] obtained contains the value zero, that is, there is no statis-
tically significant difference between the training and test distribu-
tions. Thus, statistically, the results found have analogous behaviors
and reinforce the modeling performed in the research.

After estimating the parameters of the distribution in the fit to
the databases from the stations studied, the information was spa-
tialized for the entire Northeast region. That allows visualizing the
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Table 1
Estimated minimum and maximum parameters of the Weibull-Weibull distribution in each state of the
Northeast.
States B B2 o 2 P1 2
Pernambuco min  0.559974  1.060098  0.965443  1.151371  0.063402  0.249601
max  4.530332 4498235 4571154  3.502933  0.750399  0.936598
Paraiba min 1.504365 2.429077 1.207645 2.71571 0.100478 0.236674
max  4.793033 4717773  2.891606  6.182441  0.763326  0.899522
Alagoas min  1.186569  1.360932  1.186569  1.360932  0.30000 0.515328
max  2.212482  3.637992 2212482  3.637992  0.484672  0.700000
Bahia min 0.310714 1.522241 1.12348 1.259015 0.053154 0.320183
max 6.898418 6.261342 4.274849 3.171728 0.679817 0.946846
Sergipe min 0.322462 2.432078 1.219897 1.799703 0.123509 0.65512
max 3.155649 4.497847 2.873872 3.052092 0.34488 0.876491
Maranhdo min 0.131801 1.375159 1.076328 1.272949 0.056881 0.619862
max 2.851587 4.398315 3.07158 4.516304 0.502122 0.943119
Ceard min 0.497569 2.031887 1.150285 1.806629 0.155091 0.297632
max 3.228893 5.634987 2.103365 5.223665 0.702368 0.844909
Piaui min 0.150473 1.376661 1.136813 1.323856 0.085073 0.425931
max  3.185628 5333431 2411228  3.895098  0.574069  0.914927
Rio Grande do min  1.203313  2.231378  1.203313  2.231378  0.066031  0.631977
Norte max 4.047106 5.04857 4.047106 5.04857 0.368023 0.933969

sites exhibiting the highest and lowest estimated wind speeds with
the scale parameters (8; and f,), shape parameters (o and «;),
and weight in the mixture Weibull-Weibull distribution model (o
and p,). The plots resulting from the spatialization are presented
in Figs. 6 and 7.

Only for the coastal region of Rio Grande do Norte we found a
regard between altitude and the value of the parameter 8;: values
higher than B; were found in regions with lower altitudes in RN.
As for shape parameters, we observed that oy and o, may be re-
lated to the values of altitudes in this region. We found that the
lowest values of a; and «, are concentrated in areas with lower
altitudes, especially when we visualize the distribution of the oy
parameter. For the weight parameters p; and p,, we did not iden-
tify the relationship between them and the different altitudes in
the studied region. Perhaps other features such as relief and air
currents circulating the region may provide some direct relation-
ship with these parameters.

Generally speaking, the wind speeds estimated using parame-
ters B; and B, are higher in the coastal portion of RN, as expected
from the real values observed presented in Fig. 2. The high wind
speeds at that location were likely due to the influence of trade

10

winds from the Atlantic Ocean blowing in a southeastward direc-
tion, according to the description of the main characteristics re-
ported by Barros et al. [55] when studying the seasonality of the
city of Natal, on the coast of RN. Such wind speeds in that region
are a key reason for the state to be the current largest producer of
wind energy in Brazil [51].

On the other hand, the state of MA, which is very close to the
Amazon forest, exhibited the lowest estimated hourly wind speeds,
a behavior expected given the proximity between the two regions.
It is also seen that the maximum wind speed in the state of AL is
3.64 m/s, which confirms its low potential for wind energy gener-
ation.

Thus, based on the mean wind speed found for the Northeast
region using parameter estimation of the Weibull-Weibull distribu-
tion, the states with the greatest potential for wind energy produc-
tion are Rio Grande do Norte, Bahia, Pernambuco, Paraiba, Ceara,
and Piaui. Of those, RN, BA, and CE are currently at the top of
the ranking of Brazilian states in wind energy generation [56]. It
is noteworthy that the northeastern portions of BA and PE, eastern
PB, and RN coast feature wind behaviors that favor the installation
of wind turbines and energy distribution.
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Multifractal analysis was performed on wind speed records
from 118 stations with more than 2 years of observations, using
the MFDFA package [57] (with second degree polynomial, segment
size from 10 to 32,199 h and the values of g ranging from —10 to
10) of the statistical software R [58]. In order to eliminate daily
periodicity, we calculate wind speed anomalies using Eq. (14) [59].

(Xt — Xt)
$n = 0,
where x; is the value observed at a given hour t, X; is the aver-
age and o is the standard deviation corresponding to the hour on
which observation occurred. The results for the representative sta-
tion Petrolina, located in Pernambuco state (with original and de-
seasonalized data shown on Fig. 8) are presented on Fig. 9.

It is seen from Fig. 9A that the fluctuation functions (Fq) versus
segment size (s) exhibits linear behavior indicating the multifrac-
tality of wind speed series. The generalized Hurst exponent (hq)
is a decreasing function (Fig. 9B), the Rényi exponent (74) has a
non-linear behavior (Fig. 9C) and the multifractal spectrum (f(«))
shows concave shape downwards confirming that the hourly wind
speed series from Petrolina station belongs to multifractal pro-
cesses. It is also observed that oy > 0.5, indicating overall persis-
tent properties for the wind speed in the region during the studied
period (see Fig. 9D).

To characterize the complexity of the multifractal process for all
118 available stations randomized series were generated according
to the expression rand = 20,000 * x;, where rand represents each
randomized value and x; corresponds to the value observed in the
series at time t. For both, the original anomalies (origi) and ran-
domized series (rand) the values of multifractal spectrum parame-
ters, the position of maximum (cg), width (w) and asymmetry (r)
were calculated, as well as the difference in the spectrum width of
the original and the randomized series (AW = Werigi — Wygnq)- The
results are shown in Figs. 10-12. Among all stations, Amargosa-
BA (0.0959), Jeremoabo-BA (0.0721), Lengdis-BA (0.094), and Brejo
Grande-SE (0.0954) stand out, for which w,g,, values are very
close to zero, indicating that long-range correlations are causes of
multifractality in these wind speed series. On the other hand, for
Surubim-PE station, Wygpq ~ Wyrigi (Aw = —0.0129), indicating the
probability density function as a cause of multifractality in this
series. For other stations the multifractality of randomized series
is weaker than for original series, indicating that both, long-range
correlations and probability distribution are causes of multifractal-
ity of the process.

With the values of the parameters o, w, r, and Aw for the
original series and for the randomized ones, it was possible to per-
form the spatial interpolation for the entire Northeast of Brazil and
generate the maps that can be viewed in Figs. 13-16.

It is observed from Fig. 13 that for the originals series the val-
ues of ay were greater than 0.5, indicating persistence in the wind
speed series in the entire Northeast of Brazil. It is also possible to
verify that the width of the spectrum (w) presented higher val-
ues in the south end of the map, with emphasis on Abrolhos-BA
station for which w =~ 0.64. This indicates that in that region the
multifractality is stronger in the process (see Fig. 14). High values
of the width of the multifractal spectrum reflect greater stochastic
complexity of the series and lower accuracy when making predic-
tions in temporal observations. Thus, there is greater difficulty in
making predictions of wind speed series for locations at the ex-
treme south of Bahia state. Finally, it is seen from Fig. 15, that
the multifractal spectrum shows an asymmetry to the right (r > 1)
in a large part of the Northeast, indicating that small fluctuations
contribute more to the multifractality of the process. The excep-
tions are Brumado-BA for which large fluctuations contribute more
to multifractality of wind speed (left assymetry, r ~ 0.76), Delfino-
BA (r~0.99) and Valenga-BA (r ~ 0.97) for which the multifrac-
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tal spectrum is symmetric (r ~ 1), indicating equal contribution of
both small and large fluctuations to multifractality of process (see
Figs. 10-12 and 15). In general, the value of o is varying from
0.64 to 0.91, the spectrum width from 0.15 to 0.65 and the asym-
metry from 0.76 to 5.6. Similar results were obtained by Laib et al.
[45] for 119 weather stations from Switzerland. Observing the dif-
ferent altitudes in the investigated region, we found stronger per-
sistence in the coastal regions of the states of Ceara, Rio Grande
do Norte and Maranhdo, whose altitudes are among the lowest in
northeastern Brazil. For parameters w and r, we did not find a re-
lationship between them and the altitude values of northeastern
Brazil.

4. Conclusion

The behavior of wind regimens was investigated based on infor-
mation of 14 years of observations from meteorological stations in
the Northeast region of Brazil. The main conclusions of this study
are:

The coast of Rio Grande do Norte state (RN) exhibited the high-
est mean wind speed, followed by Paraiba (PB) and Pernam-
buco (PE) states. The lowest mean speed observed was found
in Maranhdo (MA) state. The lowest standard deviations were
found in southern Bahia (BA), center-northern Piaui (PI), and
much of Maranhdo (MA);

Between 10 a.m. and 8 p.m., the mean wind speed is the high-
est at all stations, with some well-defined cyclical components;
By using the Expectation Maximization algorithm to optimize
the parameters in the five-parameter Weibull distribution, it fit
well to both unimodal data and bimodal data at all stations
studied, showing it can be appropriately used to calculate es-
timated wind power;

The spatialization of the parameters estimated in Weibull-
Weibull allowed locating possible areas for the installation of
wind turbines for electricity generation, characterized as having
the highest mean wind speeds, such as in northeastern Bahia,
eastern Paraiba, and northeastern Pernambuco, in addition to
the Rio Grande do Norte coast;

The wind speed series of the 118 stations examined with the
Multifractal Detrended Fluctuation Analysis method showed
persistent behavior over time. The complexity parameters of
the multifractal spectrum showed that, the multifractality is
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strongest in south region of Bahia state, and that for the en-
tire Northeast of Brazil, small fluctuations contribute more to
multifractality of the process;

The results of multifractal analysis of randomized series showed
that, except for the Amargosa-BA, Jeremoabo-BA, Len¢dis-BA,
Brejo Grande-SE, and Surubim-PE stations, both probability
density function and long-range correlations are causes of mul-
tifractality in the wind speed series.

Such information may help identify seasonality patterns, be-
sides predict wind potential for energy production in regions char-
acterized as appropriate, convenient, and able to this type of use.
The high wind energy potential makes its exploitation an impor-
tant tool of social transformation, a vector of sustainable develop-
ment, in addition to the possibility of insertion of wind energy to-
gether with the generation of energy by hydraulic/thermal source,
significantly reducing the risks of unavailability of energy resources
in the long term, especially in periods of longer droughts. Finally,
the information generated serves as an important tool in the plan-
ning and decision-making of companies, management bodies, and
the Government itself. Among the main areas benefited are agri-
culture, water resources, scientific studies, power generation, civil
defense, transport, health, tourism, and leisure, among others.
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Table 2

Weibull-Weibull distribution parameters in each studied station.
Number State City oy B o B wy wy
1 AL Arapiraca 1.361002 1.860128 3.637992 4410718 0.484672 0.515328
2 AL Cururipe 1.997511 2.651583 1.997511 2.651583 0.3 0.7
3 AL Maceid 2.212482 1.389615 3.306686 4.264418 0.43376 0.56624
4 AL Palmeiras dos indios 1.309499  1.779033  3.365652  3.997678  0.416994  0.583006
5 AL Pao de Agticar 1.186569  0.907616  2.729356  3.59838 0331254  0.668746
6 AL Sdo Luis do Quitunde 1.360932  2.010956  1.360932  2.010956 0.3 0.7
1 BA Abrolhos 2375498  6.898418  2.469944  6.261342 0301228  0.698772
2 BA Amargosa 1.138864  1.16673 2406377  3.652763  0.116959  0.883041
3 BA Barra 1.419388  1.35684 2339752 2.909727  0.427531  0.572469
4 BA Barreiras 1.520375 1.908081 1.520375 1.908081 0.3 0.7
5 BA Belmonte 1.483514 1.816563 1.483514 1.816563 0.3 0.7
6 BA Bom Jesus da Lapa 1.318907 1.464866 2.522623 2.059686 0.382516 0.617484
7 BA Brumado 1.426176 0.74462 2.320931 2.498592 0.31618 0.68382
8 BA Buritirama 1.217464 0.972127 2.517363 3.552684 0.335387 0.664613
9 BA Caravelas 1.49362 1.461031 2.34488 3.684235 0.330986 0.669014
10 BA Conde 1.234157 1.064841 2.728441 3.779909 0.367956 0.632044
11 BA Correntinha 3.027821 0.811623 2.090233 1.995246 0.236386 0.763614
12 BA Cruz das Almas 1.360337 2.037314 2.392966 3.432033 0.1275 0.8725
13 BA Curaga 4274849  4.009159  2.612726  3.508141  0.310044  0.689956
14 BA Delfino 2393844  1.262787  2.843464  3.571428  0.255689  0.744311
15 BA Euclides da Cunha 2.281903 3.499871 2.564802 3.699729 0.281125 0.718875
16 BA Feira de Santana 1.918934 1.521104 3.171728 3.505956 0.356036 0.643964
17 BA Formoso do Rio Preto 1.377872 1.538132 1.377872 1.538132 0.3 0.7
18 BA Guanambi 1.998138 4.458315 1.998138 4.458315 0.3 0.7
19 BA [botirama 1.163259 1.808079 1.707159 2.897343 0.320815 0.679185
20 BA Ilhéus 1.92145 2.612609 1.92145 2.612609 0.3 0.7
21 BA Ipiat 1.362948 1.588121 1.362919 1.596694 0.300001 0.699999
22 BA [recé 1.762847 0.310714 2.519272 3.34126 0.031339 0.968661
23 BA Itaberaba 1.306211 1.638499 1.998534 3.141572 0.322552 0.677448
24 BA Itamaraju 3431148  3.814291  1.797364  2.152801  0.302785  0.697215
25 BA Itapetinga 1.686045 2472316  1.686045  2.472316 0.3 0.7
26 BA [tirugd 2.903056 3.103107 1.740374 2.563412 0.679817 0.320183
27 BA Jacobina 1.85249 2.224183 1.85249 2.224183 0.3 0.7
28 BA Jeremoabo 3.6458 4.109518  1.81983 2405233 0473761  0.526239
29 BA Lengbis 2307922  0.192138  1.636034  1.563554  0.106515  0.893485
30 BA Luis Eduardo Magalhdes  1.12348 1.952038 2402721  3.61025 0.190699  0.809301
31 BA Macajuba 1.129985 1.585205 2.10171 3.808834 0.190707 0.809293
32 BA Macatbas 1.919062 2.845817 1.979274 2.512856 0.30103 0.69897
33 BA Marat 1.464377 1.624356 2.696009 2.849761 0.326913 0.673087
34 BA Paulo Afonso 2.627738 4.47758 2.627738 4.47758 0.3 0.7
35 BA Piata 1319372 2.142884 2421263  3.082899  0.243073  0.756927
36 BA Pildo Arcado 2.250838  3.088288  2.250838  3.088288 0.3 0.7
37 BA Porto Seguro 1.649587  0.588992  2.445269  2.345246  0.401503  0.598497
38 BA Queimadas 2172329  3.735228  2.172329  3.735228 0.3 0.7
39 BA Remanso 1.486059  2.661509  2.78035 4494104  0.428423  0.571577
40 BA Salvador 2.782964  1.890932  1.518203  1.886781  0.573959  0.426041
41 BA Santa Rita de Cassia 1.726166  1.890501  1.726122  1.890924 0.3 0.7
42 BA Senhor do Bonfim 1.858513 2.994891 2.619747 3.5616 0.248703 0.751297
43 BA Serrinha 1.818239 2.506236 3.086804 3.639633 0.402103 0.597897
44 BA Uaud 1.294373 2.370793 2.912575 4.36742 0.053154 0.946846
45 BA Una 1.355367 0.923997 1.939361 1.954935 0.346164 0.653836
46 BA Valenga 1.259015  1.522241 1259015 1522241 0.3 0.7
47 BA Vitéria da Conquista 2.13429 2462333 2957945  3.085342  0.333735  0.666265
1 CE Acarat 1.923043 2930447 5223665  5.634987  0.702368  0.297632
2 CE Barbalha 1.806629  2.031887  1.806629  2.031887 0.3 0.7
3 CE Campos Sales 1.150285 1318324  2.757942  3.87106 0.253511  0.746489
4 CE Crateds 2.103365  2.450825  2.103365  2.450825 0.3 0.7
5 CE Fortaleza 1.443187 1.785075 3.020343 3.740161 0.301887 0.698113
6 CE Guaramiranga 1.804959 3.063079 3.262508 3.763733 0.155091 0.844909
7 CE Iguatu 1.880373 2.903189 1.881445 2.904571 0.3 0.7
8 CE Jaguaribe 2.040087 3.228893 2.040087 3.228893 0.3 0.7
9 CE Jaguaruana 1.200629 1.552842 2.613391 4.094945 0.249094 0.750906
10 CE Morada Nova 1.275596  1.532838 2760895  3.733637  0.311277  0.688723
11 CE Quixeramobim 1.393703  0.497569  2.100248  3.274513  0.157483  0.842517
12 CE Sobral 1.420848  1.885147  2.523791 3.856027  0.447294  0.552706
13 CE Taud 1.157571 1.443839  2.841617  3.99711 0.220544  0.779456
1 MA Alto Parnaiba 1.395257  0.446617  2.01866 2220045 0380138  0.619862
2 MA Bacabal 2.943047 0.152168  1.677186  1.862433  0.075647  0.924353
3 MA Balsas 1.298371 2.046303 1.298371 2.046303 0.3 0.7
4 MA Barra do Corda 1.212783 1.215002 2.289265 2.338432 0.502122 0.497878
5 MA Buriticupu 1.625122 2.540452 1.625122 2.540452 0.3 0.7
5 MA Carolina 1.272948 1.607364 1.272949 1.607364 0.3 0.7
6 MA Caxias 1.318318 1.375159 1.318318 1.375159 0.3 0.7
7 MA Chapadinha 2.010423  2.094673  2.010423  2.094673 0.3 0.7
8 MA Colinas 1.97879 0.226093  1.567013  1.94253 0.123567  0.876433

13
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Table 2 (continued)
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Number  State  City o B o B Wy Wy

9 MA Estreito 1.189088  0.973999  1.781245 2558716  0.336706  0.663294
10 MA Farol de Santana 2.085395  2.851587  4.516304 3.857066  0.189804  0.810196
11 MA Grajat 1.685672 1.768069 1.685672 1.768069 0.3 0.7

12 MA Imperatriz 1.076328 0.99303 1.49608 1.761861 0.319573 0.680427
13 MA Preguigas 1.153051 1.854552 3.575603 4.398315 0.108609 0.891391
14 MA Sdo Luis 1.29837 1.106898 3.097371 3.076234 0.336366 0.663634
15 MA Turiag 3.07158 0.131801 2.162783 3.271396 0.056881 0.943119
1 PB Areia 2.891606  4.793033  4.047802  4.717773 0336706  0.663294
2 PB Cabaceiras 1301109  1.815377  3.486614  4.267541  0.28611 0.71389
3 PB Camaratuba 2.010676  3.183325  6.182441  5.650085 0.763326  0.236674
4 PB Campina Grande 1.49055 1.95856 3.187892  3.923041  0.100478  0.899522
5 PB Jodo Pessoa 2511171  3.034667  2.794838  2.429077 0332101  0.667899
6 PB Monteiro 1.26609 1.675091  2.722817  4.090184  0.170055  0.829945
7 PB Patos 1.2434 1.786132 2.71571 4.329456 0.150585 0.849415
8 PB Sdo Gongalo 1.207645 1.504365 2.540796 2.737598 0.358182 0.641818
1 PE Arco Verde 1.447448 2.867465 3.181265 4.013963 0.175061 0.824939
2 PE Cabrobd 1.334876 0.559974 2.686999 4.377489 0.063402 0.936598
3 PE Caruaru 1.541998 2.289491 3.502933 4.282608 0.361672 0.638328
4 PE Floresta 2391384  3.56342 2391384  3.56342 0.3 0.7

5 PE Garanhuns 0.965443  1.482901  2.489687  3.416215 0.183256  0.816744
6 PE Ibimirim 2219628  3.361993  2.219628  3.361993 0.3 0.7

7 PE Ouricuri 4571154 4530332  2.082035 3.109644 0314188  0.685812
8 PE Palmares 1477135 2375182 1477135 2375182 0.3 0.7

9 PE Petrolina 1.364484  2.487726  3.490777  4.179945  0.069061  0.930939
10 PE Recife 2.530471 0.675868 2.697016 241101 0.26175 0.73825
11 PE Salgueiro 3.029233 3.369175 1.151371 1.060098 0.750399 0.249601
12 PE Serra Talhada 2.236253 2.905932 2.236253 2.905932 0.3 0.7

13 PE Surubim 1.132969 1.647545 2.622215 4.498235 0.174066 0.825934
1 PI Alvorada do Gurguéia 1.330104 1.375011 2.200349 2.948802 0.426036 0.573964
2 PI Bom Jesus do Piaui 1.951208 0.225103 1.662523 2.587719 0.100305 0.899695
3 Pl Canto do Buriti 1.799856 3.185628 1.799856 3.185628 0.3 0.7

3 PI Caracol 1.230657 1.523925 2.917669 4.187517 0.500044 0.499956
5 PI Castelo do Piaui 1.736184 2.290221 1.736184 2.290221 0.3 0.7

6 PI Esperantina 1236877  1.339308  2.299955  2.086901  0.474529  0.525471
7 Pl Floriano 1.136813  0.930553  1.6361 2.185466  0.342166  0.657834
8 Pl Gilbués 1.728864 2.689923 1.728864 2.689923 0.3 0.7

9 Pl Oeiras 1.323856 2.196636 1.323856 2.196636 0.3 0.7

10 Pl Parnaiba 1.802202 2.8133 3.895098 5.333431 0.563427 0.436573
11 Pl Paulistana 1.281114 1.809216 2.920173 4.451634 0.182392 0.817608
12 Pl Picos 1.794231 2.604822 1.794231 2.604822 0.3 0.7

13 Pl Piripiri 1.310893 1.645811 1.854913 2.332707 0.313746 0.686254
14 Pl Sdo Jodo do Piaui 1.366669 1.537622 3.148349 3.38832 0.447285 0.552715
15 PI Sdo Pedro do Piaui 2411228 2.440907 2978614 1.376661 0.573582 0.426418
16 PI Sdo Raimundo Nonato 1.392952 1.596405 3.186823 3.509533 0.574069 0.425931
17 Pl Teresina 2.166081  0.207841  1.608906  1.750046  0.11113 0.88887
18 Pl Urugui 2.95669 0.150473  1.502236  1.815776  0.085073  0.914927
19 Pl Valenga do Piaui 1.804591  2.074498  1.804591  2.074498 0.3 0.7

1 RN Apodi 1203313 0.605652  2.231378  3.782606  0.066031  0.933969
2 RN Caico 2382226 3.478441 2382957 3.478966 0.3 0.7

3 RN Calcanhar 4.047106  4.572036  5.04857 8.503106  0.228696  0.771304
4 RN Macau 2.511187 5.253387 251119 5.253392 0.3 0.7

4 RN Mossord 2.057301 1.994142 3.784013 5.049751 0.368023 0.631977
5 RN Natal 3.587064 5.827875 3.217895 4.548699 0.322727 0.677273
6 RN Santa Cruz 2.051828 1.302669 3.151695 3.405675 0.237819 0.762181
1 SE Aracaji 1.805514 2.477546 2.996538 4.142791 0.34488 0.65512
2 SE Brejo Grande 1.623168  0.322462  2.150305  2.432078  0.123509  0.876491
3 SE Carira 1292074  2.016623  3.052092  4.6831 0.276301  0.723699
4 SE Itabaiana 1.799705  3.155649  1.799703  3.155644 0.3 0.7

5 SE Itabaianinha 2231012 3.11913 2231012 3.11913 0.3 0.7

6 SE Nossa Senhora da Gléria ~ 2.873872  3.100695  2.873872  3.100695 0.3 0.7

7 SE Pogo Verde 1219897  1.826628  2.791558  4.497847  0.201771  0.798229
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Abstract
The identification of the probability distribution model that provides the best fit to the wind
speed databases is necessary for defining investment and developing projects about the wind

potential of different locations. For this, the estimation of the parameters of the models is

essential in this process. The aim of this study is to investigate among the distribution models
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and methods for estimating their respective parameters with better modeling in the literature
which of them provides better fit to the wind speed data of Petrolina-PE. Through the case
study, of quali-quanti nature, the adjustment of the Moment Method, the Estimation of
Maximum Likelihood and the Particle Swarm Optimization (PSO) algorithm with Weibull were
evaluated in this work, as well as the PSO with the Lognormal-Weibull and Weibull-Weibull
distributions to the historical series of information. The results, investigated with the RMSE,
R? and y? error measures and by verifying the percentage of correctness between the theoretical
and sample quantiles, demonstrated a better modeling of the Lognormal-Weibull distribution
model with the PSO algorithm to the historical speed series of the wind. Thus, from the
determination of the best distribution model that fits the data in the region, it may be possible
to generate estimated wind speed series for areas where these historical series do not exist.

Keywords: Weibull; Lognormal; MM; EMV; PSO; Adjustment.

Resumo

A identificagdo do modelo de distribuicdo de probabilidade que forneca o melhor ajuste as bases de
dados de velocidade do vento é necessaria para defini¢do de investimento e desenvolvimento de projetos
acerca do potencial edlico de diversas localidades. Para isso, a estimativa dos pardmetros dos modelos
¢ essencial nesse processo. O objetivo deste estudo ¢ investigar dentre os modelos de distribuicdo e
métodos para estimativa de seus respectivos parametros com melhor modelagem na literatura qual deles
fornece melhor ajuste aos dados de velocidade do vento de Petrolina-PE. Através do estudo de caso, de
natureza quali-quanti, foram avaliados neste trabalho o ajuste do Método dos Momentos, da Estimacdo
de Maxima Verossimilhanga e do algoritmo Particle Swarm Optimization (PSO) com a Weibull, bem
como o PSO com as distribuicdes Lognormal-Weibull e Weibull-Weibull a série histérica de
informagdes. Os resultados, investigados com as medidas de erro RMSE, R? ¢ y? e pela verificagdo da
porcentagem de acerto entre os quantis tedricos e amostrais, demonstraram melhor modelagem do
modelo de distribuicdo Lognormal-Weibull com o algoritmo PSO a série historica de velocidade do
vento. Dessa maneira, através da determinagéo do melhor modelo de distribuigdo que se ajuste aos dados
na regido, pode ser possivel gerar séries de velocidade do vento estimadas para areas onde ndo existem
essas séries historicas.

Palavras-chave: Weibull; Lognormal; MM; EMV; PSO; Ajuste.
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Resumen

La identificacion del modelo de distribucion de probabilidad que proporciona el mejor ajuste a
las bases de datos de velocidad del viento es necesario para definir la inversion y desarrollar
proyectos sobre el potencial edlico de diferentes ubicaciones. Para esto, la estimacion de los
parametros de los modelos es esencial en este proceso. El objetivo de este estudio es investigar
entre los modelos y métodos de distribucion para estimar sus respectivos parametros con un
mejor modelado en la literatura que de ellos proporciona un mejor ajuste a los datos de
velocidad del viento de Petrolina-PE. A través del estudio de caso, de naturaleza quali-quanti,
el ajuste del Método momento, la Estimacion de Maxima Probabilidad y el algoritmo de
Optimizacion de Enjambre de Particulas (PSO) con Weibull fueron evaluados en este trabajo,
asi como el PSO con las distribuciones Lognormal-Weibull y Weibull-Weibull a la serie
histérica de informacioén. Los resultados, investigados con las medidas de error RMSE, R? y
x?y al verificar el porcentaje de correccién entre los cuantiles tedricos y de muestra,
demostraron un mejor modelado del modelo de distribucion Lognormal-Weibull con el
algoritmo PSO a la serie de velocidad historica del viento. Por lo tanto, a partir de la
determinacion del mejor modelo de distribucion que se ajuste a los datos de la region, puede
ser posible generar series estimadas de velocidad del viento para areas donde estas series
histéricas no existen.

Palabras clave: Weibull; Lognormal; MM; EMV; PSO; Ajuste.

1. Introduction

Wind energy is an important energy source in the replacement of sources obtained by
conventional and exhausting resources. According to ABEEolica, it is expected that by 2023
the production of wind energy on Brazilian soil will reach the mark of almost 20 GW of installed
capacity (ABEEolica, 2019), reducing the consumption of fossil fuels to generate this energy
source.

An advantage in the case of the substitution of water by winds in strengthening the
energy matrix is the greater use of the water reserve of reservoirs for human consumption,
animal and irrigation, among others, especially in regions affected by scarcity of rains and large
droughts.

However, before the installation of wind farms, investigations are needed on the
potential to obtain energy from winds in localities that have conditions considered favorable to

this end (dos Santos et al., 2019). For this, the modeling of wind speed is being performed
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through the Probability Density Functions in the adjustment of distribution models to the
databases.

In the literature, several probabilistic distributions have been used (Gamma, Raileigh,
Log-Normal, Logistica, Burr), especially the Weibull distribution (Rocha et al., 2018) and the
mixtures of distributions, such as Lognormal-Weibull ¢ Weibull-Weibull (Rajapaksha &
Perera, 2016).

To obtain the parameters of the model that fits the data it is necessary to choose the
methods that perform the best estimates, such as the Moment Method (MM) and the Maximum
Likelihood Estimation (EMV) or optimization algorithms such as Particle Swarm Optimization
(PSO), in order to minimize the estimation errors obtained with traditional methods. In this
choice, the performance of the adjustment of the parameters can be evaluated according to the
values of the Coefficient of Determination (R?) and the Mean Quadratic Error of The Residue
(RMSE), as well as the Chi-square test statistic (y?2).

Thus, the objective of this work is to compare the adjustments made with MM, EMV,
and PSO and to seek the values for Weibull parameters that allow lower errors in the estimation
of the parameters of this distribution.

The mixtures of Lognormal-Weibull and Weibull-Weibull distributions were observed
with optimization with the PSO algorithm. For the comparison, we used hourly historical series
of wind speed of Petrolina-PE, due to the need to reduce water consumption in the vicinity of
this region for energy production purposes, since the locality requires aquifer reserves for
irrigation of different fruit trees predominant in the surroundings (Melo et al., 2014).

The rest of this article is structured as follows. Section 2 describes the region
investigated and the database used. Section 3 is explored the description of the distribution
models Weibull, Weibull-Weibull, and Lognormal-Weibull. Section 4 presents the Moment
Method and the Maximum Likelihood Estimation Method. Section 5 sets out a description of
the Particle Swarm Optimization algorithm. Section 6 shows statistical estimates adopted in
this article. In section 7 the results and discussions are covered. Finally, section 8 finds the final

considerations of the article.
2. Area of Study and Data Collection
The development of this study was carried out in the municipality of Petrolina, located

in the Brazilian Semiarid, to the extreme west of the state of Pernambuco, between the states of

Bahia and Piaui (Jatoba et al., 2017), under the geographic coordinates of latitude -9.38832 and
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-40.5233 (see Figure 1). Rainfall is concentrated in three to four months of the year and

temperatures range from 18.7 ° C to 33.6 ° C. (da Silva et al., 2017). According to the last census

conducted, the municipality has 293,962 inhabitants and a population density of 64.44

inhabitants/km? (IBGE, 2019).

Figure 1. The geographical position of the municipality of Petrolina in the upper Sertdo of

Pernambuco.
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The hourly wind speed observations used in this research were obtained from the

National Institute of Meteorology - INMET, from 21/02/2003 to 09/30/2018. Such observations

were collected from the automatic meteorological station located at the geographic coordinates

of longitude -40.367 and latitude -9.150, at a height of 10 m and altitude of 366 m, in the city

of Petrolina-PE. For the analyses, the daily means were evaluated, and all calculations were

made in the R software.

According to Pereira et al. (2018), this study is a case study, in which a quali-quanti

method was applied, in which the qualitative results reinforce the numerical ones,

complementing them.

3. Distribution Models

Knowledge about the distribution model that best characterizes the behavior of the wind
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regime is fundamental in the evaluation of wind potential in a locality. In this sense, Weibull
(W) is one of the most used distributions, especially due to the simplicity necessary to estimate
the parameters of its model and the good adherence of the model to the different wind speed
databases. Other distributions also applied to this end are the mixtures of Weibull-Weibull
(WW) and Lognormal-Weibull (LNW) distributions, which present good adjustments to
bimodal series. The mathematical expressions of the probability density functions of the
Weibull, Weibull-Weibull and Lognormal-Weibull distribution model, with their respective
parameters are found in Table 1 (Rajapaksha & Perera, 2016).

Table 1. Mathematical equations of the Weibull, Weibull-Weibull and Lognormal-Weibull

distribution models.

Distribution Equation Parameters

Weibull z)" (a,B)

fw(; a,B) =%(3) “ e_(ﬁ
Weibull-Weibull fww (Vs W, aq, B, @z, B2) =wf (v; ay, 1) + W, ay, By, a2, B2)
A =w)f(v; a3, B7)

Lognormal- finw@; w4, ¢, a,0)=wl(v; 4, ¢) + (1 — w, 4, ¢, a,B)
Weibull w)f(v; a,B)

Source: Prepared by the authors.

in which v corresponds to the observation of wind speed, a is the shape parameter, S is the
scale, w is the weight of the mixture of distributions, A is the average and ¢ is the standard

1 —(In() - AZ)]
v 4)\/2_ 292

deviation, being l(v; 4, $)=

4. Numerical Methods for Estimating Parameters
In the Moment Method, the estimation of population parameters occurs through an

iterative process based on the sample and theoretical (population) moments of the random

variables, equaling them (de Souza et al., 2019), that is,

m, = up,n=12,...,1, (1)
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in which m,, are the sampling moments, and p,, are the theoretical moments.

While Maximum Likelihood Estimation is performed from the product of the
probability density functions (continuous random variables) or from the probability functions
(discrete random variables) of the series observations, provided that each random variable event
is independent (Seckin et al., 2010). It is a methodology widely used in the literature for the
estimation of parameters. Particularly, to estimate the parameters @ the Weibull distribution

used in the modeling of wind speed data, can be used the log-likelihood function given by
(Ouarda et al., 2016).

n 2
InL =In (ﬂf@(ﬂ)) @

where n is the sample size, and v; is every wind speed observation in the instant i.
5. Metaheuristic Optimization for Estimating Models Parameters

The Particle Swarm Optimization algorithm was originally developed by Kennedy and
Eberhart and is a population-based stochastic investigation procedure. Every possible solution
in search space is called a particle. All particles move Iteratively throughout optimization
according to information from the best swarm experiences (particle set) and their own
experience (Zhou et al., 2018). The velocity and position equations that guide the movement of

each particle can be seen below.
Vit+1) = wxVi(t) + cyxri(pr — X)) + 2 x1(pg — X)) 3)
Xi(t+1) =X;(t) + Vi(©) 4)
in which V; represents particle velocity i, t the iteration, w the inertial weight, ¢; the local
cognitive, ¢, the social cognitive, r; and r, the vectors of random numbers, p; the best position

of particle I, pg the best position among all the particles in the swarm and X; the position of

particle i.
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A function, called an adaptation function or fitness, is used to evaluate the performance
of particles, and keep them in the direction of the best solution to the problem investigated. The

implementation of the traditional PSO algorithm can be described as:

(i) To generate p random particles and initialize them in the search space;
(ii) To evaluate each particle and to calculate its respective fitness functions;
(iii)  To calculate the best local (p;) and global (p,);

(iv)  To update particle velocities and positions using Equations 3 and 4;

W) Update the inertial weight w according to the current iteration information.

The process must be repeated until some stop criterion is reached, such as reaching the

maximum expected error or a maximum number of iterations of the algorithm.

6. Statistical Estimates

With the methods of estimation of parameters used, the evaluation of the adjustment of
the models to wind speed observations can be performed through the statistics Mean Quadratic
Error of Residue (RMSE), Coefficient of Determination (R?), and Chi-square (x?). Their
respective expressions can be viewed in Equations 5, 6, and 7 (Pishgar-Komleh & Keyhani,

2015; Kumar et al., 2019).

1
. . )
2
RMSE = [EZ(Yobs - Yesp) ]
i=1
(Z?=1(Yobs — Yops) * (Yele - ?;;))2 ©

R* =

—_ 2
Z?:l(yobs - obs)2 * Z?=1(Yesp - Yesp)

[(Yobs esp) ] (7)
esp

in which, Y, indicates the observed values, Y., indicates the expected values and, Y, and

Y.sp indicate the means of the observed and expected values, respectively.
7. Results and Discussion

Table 2 presents the descriptive statistics of the analyzed wind velocity database. It is
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verified that there is low variability in the observations, with coefficient of variation (CV) of

35.12% and an average velocity of 3.66 m/s.

Table 2. Descriptive analysis of wind velocity observations in the municipality of Petrolina-

PE.

Min. 1°Quartile Median Mean 3° Quartile Max. Skewness Kurtosis CV%

0.10 2.80 3.70 3.66 4.50 12.00 -0.06 2.98 35.12

Source: Prepared by the authors.

Figure 2 illustrates the curves of the probability density functions resulting from the
adjustments of the parameters of the Weibull distribution model using EMV, PSO and MM, as
well as the results obtained with the Weibull-Weibull and Lognormal-Weibull mixtures

applying PSO.

Figure 2. Distribution models adjusted to the wind speed database in Petrolina-PE.
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Source: Prepared by the authors.

According to Figure 2, although the adjustment performed by the Lognormal-Weibull
mixture with PSO (in yellow) is standing out to the detriment of the others, visually it is not
possible to define whether this is the optimal distribution for the modeling of the Petrolina-PE

database in the studied period.
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From this, the values of statistics RZ, RMSE, and y? were examined, as shown in Table

Table 3. Estimates of statistical tests.

Statistics W-EMV W-MM W-PSO WW-PSO LNW-PSO
R? 0.99473 0.994817 0.997848 0.997992 0.998507
RMSE 0.008134 0.008057 0.005949 0.005528 0.004266
x2 6.64e-05 6.52e-05 3.55e-05 3.09e-05 1.84e-05

Source: Prepared by the authors.

Table 3 was observed that although the Coefficient of Determination (R?) of all
analyzed methods had values very close to one, the adjustment of the Lognormal-Weibull
distribution model with the optimization of parameters by the PSO algorithm (LNW-PSO)
resulted in the best approximation. Regarding the Mean Quadratic Residual Error (RMSE), all
the values obtained were very small and close to each other. However, the LNW-PSO's RMSE
stands out as the smallest among them, revealing a better fit. Table 3 also shows that all adjusted
distributions obtained lower statistics than the p-value of 5% for the statistic 2. However, the
lowest of the values were obtained by the PSO algorithm applied to the Lognormal-Weibull
distribution mixture. This fact corroborates the results obtained by statistics R? ¢ RMSE,
demonstrating that the optimization of Lognormal-Weibull parameters with the Particle Swarm
Optimization algorithm expresses a better fit to the investigated database.

The percentages of success of the quantiles of the data set of the adjusted distribution in
relation to the quantiles of the empirical set of data were calculated for each adjusted model.
The Lognormal distribution mixture with Weibull, with parameters optimized with PSO,
showed a higher percentage of correct answers than the other models analyzed (71.14%). Next,
weibull via EMV (70.91%) and Weibull with MM (70.8%). These results reveal that, for the
investigated database, the numerical methods EMV and MM provide good adjustments if
applied to the Weibull distribution. On the other hand, for mixtures of distributions the PSO
optimization algorithm provides better approximation of model parameters to the sample data
if the Weibull distribution combined with the Lognormal distribution is applied, to the
detriment of the Weibull-Weibull distribution for the data studied. This result is interesting
because, in general, Weibull and Weibull-Weibull distributions are better adjusted to wind

speed series, there is no optimal model that can perform modeling on all wind speed series.
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(Qin et al., 2012).
Figure 3 illustrates the convergence graph for 30 PSO simulations during the
optimization of the parameters of the Lognormal and Weibull distribution mixture (in black)

and for the average behavior of these simulations (in red).

Figure 3. PSO convergence process in the search for the optimal parameters of the LNW

distribution model.
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Source: Prepared by the authors.

The Ox axis in Figure 3 indicates the number of iterations performed and the Oy axis
the fitness value obtained at each iteration. The fitness function was used to minimize the
distance between the sample density and the theoretical of the LNW. A decline in fitness values
is observed throughout the iterations, in addition to the good and rapid convergence of the PSO
in the search for the ideal parameters of the Lognormal-Weibull distribution model.

The swarm in the search for optimal parameters was composed of 30 particles. Figure 4

illustrates the movement of the best particle.
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Figures 4. Movement of the best particle in the search space in relation to the parameters of the

Lognormal and Weibull distribution, respectively.
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It is possible to verify that Figure 4 displays the movement of the best particle in the
search space at each iteration of the PSO, in relation to the parameters of average and standard
deviation of the Lognormal (Meanlog and SDlog, respectively) and shape (Shape) and Scale
(Scale) of Weibull. The green sphere indicates the starting position, while the red sphere

indicates the final position on the movement.

8. Final Considerations

From the comparison of the adjustments made between the Weibull distribution with
the Moment Method, with the Maximum Likelihood Estimation and with the Particle Swarm
Optimization algorithm, as well as the Lognormal-Weibull and Weibull-Weibull adjustments
both with the PSO, it was verified that the lowest estimation errors of the parameters of these
distributions with the adopted methods were achieved with Lognormal-Weibull via PSO, with
a percentage of hit of 71.14% of the adjusted data compared to the empirical data set of
Petrolina-PE in the analyzed period.

This result is important in the sense that it is of paramount importance to determine the
distribution model that offers better quality in the adjustment to wind speed data in order to
assist in making decisions about the wind potential of the region, being able to minimize

operational costs of wind power management, generation and distribution.

12
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As future studies, the Lognormal-Weibull distribution combined with the Particle
Swarm Optimization algorithm to obtain the parameters of the model can be used to calculate
the potential of wind generation in the municipality of Petrolina, Pernambuco. In addition,
studies on the gust of winds in this region can be conducted and assist public and private
managers for better wind use, aiming at reducing losses arising from the by damage caused by

high gusts in wind turbines.
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1. INTRODUCTION

Photovoltaic (PV) solar energy can act as a complementary energy source to existing renewable
sources worldwide. There is uncertainty about each country's compliance with the Paris Agreement on
reducing CO2 in the atmosphere. Regarding countries' actions at COP26, in Glasgow, Scotland, in
2021[1], there is a concern for the agreements to be served up to 2030, with a temperature reduction of
around 1.5°C [2]. At COP26, Brazil committed to reducing about 50% of greenhouse gas emissions in
the atmosphere, showing that by 2019, around 53.8% of all Brazilian energy was derived from fossil
sources [3]. On June 09, 2022, more than 83% of all energy in Brazil was from renewable energies,
exceeding 184 GW of installed power [4]. Based on these observations, photovoltaic energy can
contribute to the reduction of global warming, as this energy source is clean and renewable. In the
globalized world, there is an expanding need for investment in new renewable sources to supply all the

energy demand.

The photovoltaic energy market has been extensively studied. In recent years, several researchers
have studied the photovoltaic energy potential [5], [6], [7], [8], [9], [10]. Other studies used the MFDFA
Multifractal Detrended Fluctuation Analysis method in the solar radiation series [11], [12], [13]. The
studies verified the complexity properties of multifractality, which are pretty relevant in solar radiation
series since it is possible to understand the characteristics of time series, such as persistence, anti-
persistence, and dynamics. Plocoste and Pavon-Dominguez [14] found evidence of long-range

correlations and small and significant fluctuations in the solar radiation series.

In Brazil, in recent years, investments in photovoltaic energy generated from solar panels have been
gaining more and more space in its energy matrix [15]. Some research is being done with the objective
of understanding this clean and renewable energy source in the country [16], [17], [18]. In this scenario,
Brazil has great potential for photovoltaic energy; the country contributes to reducing the greenhouse
effect in the atmosphere. Water is the main source of Brazilian energy generation used for energy
generation by hydroelectric plants, which account for about 60% of the entire energy matrix in Brazil

[19].
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Photovoltaic energy is expected to be responsible for about 3.9% of all Brazilian energy by 2025, 42
reaching 36% by the year 2050 [20]. Marchetti and Rego (2022) [21] observed that in Brazil's Northeast
and Southeast regions, solar park performance capacity peaks occur at noon, with large productions
between 10 am and 3 pm. In the state of Paraiba, located in the Northeast region of Brazil, water use for
hydroelectric energy can be replaced by energy generated from solar radiation [22]. In the researched
literature, no work was found using the Multifractal Detrended Fluctuation Analysis — MFDFA method
to analyze the time series of solar radiation in Brazil. To fill this gap in the literature, we used the
MFDFA method in the daily time series of solar radiation from 2010 to 2022. In this article, we
investigated the multifractality properties of the time series of solar radiation in the entire Northeast
region of Brazil, intending to verify suitable areas for installing solar panels for the possible generation
of solar energy.

The rest of the article is organized as follows: In section 2, study areas, the study stations are located.
In section 3, we present the MFDFA methodology. In subsection 4, we present the Inverse Distance
Weighting (IDW) interpolation method for estimating values in which we do not have any a priori

information. Section 5 shows the results found and compares them with the literature. In section 6, we

conclude our findings in this article.

2. STUDY AREA
The Northeast region of Brazil has a geographic area of approximately 19,427 km? [23]. The

Northeast is characterized as a dry and semi-arid region. Most of the time, it has low precipitation rates

. : . . w2 .
in much of the region. Detailed solar radiation (; ) databases containing hourly measurements from

2010 to 2022 in the Northeast region of Brazil were obtained from the National Institute of Meteorology

(INMET?). Figure 1 shows the geographical locations of the meteorological stations investigated in the
states Alagoas-AL, Bahia-BA, Ceara-CE, Maranhdo-MA, Rio Grande do Norte-RN, Paraiba-PB,

Pernambuco-PE, Piaui-PI and Sergipe -SE in the Northeast region of Brazil.

2 https://tempo.inmet.gov.br/TabelaEstacoes/
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Figure 1. The geographical location of meteorological stations in the Northeast region of Brazil.

In Figure 2, to exemplify the times with the highest incidence of solar radiation, we present the
historical series of the behavior of a measurement day for the nine capitals of the Northeast Region of
Brazil. For all capitals, the peak of solar radiation occurs between 10:00 am and 3:00 pm on August 29,

2022 (Time zone in Brasilia, Federal District (GMT-3)).
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Figure 2. Hourly time series of solar radiation (g ) measured on August 29, 2022.



3. Method
The Multifractal Detrended Fluctuation Analysis (MFDFA) method is a generalization of the

Detrended Fluctuation Analysis (DFA) method. MFDFA is a powerful tool for detecting multifractal in
a non-stationary time series with small and large fluctuations.

The MFDFA method has been widely used in financial series applications [24], energy market [25],
the impact of COVID-19 on energy prices [26], rainfall characteristics in India [27], closing prices of
commodities [28], in addition to the time series of temperature and solar radiation [29]. The
implementation of the MFDFA method considers any set of a non-stationary time series x;
(i =1,2,...,N) with a specific length N. We determine the following steps of the MFDFA:

(i) The first step is to construct a new integration of the original series x(i) after subtracting the

. .. L1
mean of the time series X, in which x = EZ{F:l X,

k (1
X(k) = Z[X(i) —.f],k = 1,2, ...,N.

i=1

(ii) The second step is to generate an integrated series, subdividing X (k) into N,, = int(%) non-

overlapping segments of sizes equal to n(scale). In the segments v = 1,2, ..., %, the local trend X, ,,(k)

is estimated by the least squares fit of the series.

(iii) In the third step, the unbiased variance is estimated by the following equation:
. 1\ 2 2)
Pon=y > [X0) X0
k=(v-1)n+1
(iv) In the fourth step, we calculate the average of all segments and obtain the fluctuation function
of order q, given by the following equation:
3)

1
q
q
2

Ny
1
B =1 [FPoo)l
nv:l

where q can take on any real value other than zero.
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(v) In the fifth step, the scales of the fluctuation functions are analyzed using log — log F;(n) 45

graphs at each scale n, in which they follow a power law F,(n) « n™@ for cases where long-range
correlations are present in the time series.

The scale exponent h(q) is called the generalized Hurst exponent. In the case where a time series is
stationary, h(q = 2) is identical to the well-known Hurst exponent (2). For positive values of q, h(q)
presents a scaling behavior of large fluctuations; in contrast to values of q negative, h(q) shows small
fluctuations. If h(q) is independent of g, the time series has a monofractal process, and if h(q) decays
with respect to g, the time series has a multifractal process.

The relationship between the generalized Hurst exponent and the Rényi exponent 7(q) can be defined

by the equation,

1(q) = qh(q) — 1, “4)

for the monofractal process, T(q) is a linear function of q, h(q) is a constant, and for time series with a
multifractal process, 7(q) is a nonlinear function. The latter can also be characterized by the singularity

spectrum or multifractal spectrum f(a), where it is obtained through the Legendre transform,

()

or@)
a(q) =5,

f(a(@) = qa(q) —(q), (6)

where a is the Holder exponent, f () indicates the multifractal dimension of the singularity measure of
the series characterized by a. For the monofractal process, the singularity spectrum is represented by a
single point, while a downward concave function gives the multifractal spectrum.

To measure the degree of complexity of the multifractal spectrum of a time series, we fit a fourth-
degree polynomial, and from there, we can obtain the parameters of the MFDFA method. The three

parameters of the singularity spectrum are estimated from the following equation:

fl@)=A+B(a—ay) +Cla—ay)?>+D(a—ay)® +E(a—ay)* (7)



When fitted, the fourth-degree polynomial reveals the value of «, which is the maximum point of 46
the singularity spectrum. For the value of ay = 0.5, the times series are said to be random. For values
of ¢y < 0.5, the series are anti-persistent, showing that the time series show behavior of sudden changes
over time. For values of @y > 0.5, the series exhibit persistent behavior, indicating that the time series
do not show sudden changes over time [28].

max

The asymmetry value, obtained by r = g, is the asymmetry value of the multifractal spectrum,

Ao ~&min
where the value of r = 1 reveals multifractal asymmetry and indicates that the time series process is
governed by small and large fluctuations. Values of r > 1 reveal asymmetry to the right, indicating
large fluctuations in the multifractal process. Values of r < 1 reveal asymmetry to the left, indicating
small fluctuations in the multifractal process [30]. The spectrum width is calculated by W = a4, —
Qmin. Values of W = 0 indicate that the series is uniformly distributed. Higher W values indicate a

greater degree of multifractality.

4. Inverse Distance Weighting (IDW)

The Inverse Distance Weighting (IDW) method was used to estimate values of multifractal
complexity parameters. Through this interpolation method, it is possible to predict values of
observations based on the information closest to the point we want to estimate. The mathematical

equation of the IDW method is defined as follows [31]:

_ X ZiVi (8)

n BE
i=1 Wi

where x is the unobserved point to be predicted, Z; is the control value of the i-th point of the time series,
and W; = d;, f,_i is the weight defined in the interpolation for estimating the new point, where d,,, ; is

the distance between z, x y and z; and £ is an exponent defined by the searcher, in our work was using

the value of § = 3.



5. Results and discussion

In Figure 3, the highest averages of solar radiation in the Northeast region are concentrated in the
West and Northeast parts of the region, with emphasis on the state of Ceara, Southwest of Bahia, in the
southern part of the states of Piaui and Maranhao. In addition to a large part of the coast of Rio Grande
do Norte and west of the border of the states of Sergipe and Alagoas. On the other hand, the coastal part
between Bahia and Alagoas is the area with the lowest incidence of solar radiation in the Northeast
region of Brazil. Also, according to Figure 3, the Southwest and Northeast parts of the map present the
areas with the highest values of the standard deviation of solar radiation. To the north of the region, the
lowest values of the standard deviation of solar radiation were verified. The state of Maranhdo stands
out because, among all the states, throughout its area, the values of the standard deviations had a uniform
behavior. This behavior of the state of Maranhdao may have been influenced by its proximity to the
Amazon rainforest. This somehow reflects a lower standard deviation in the region. In this sense,
deforestation can somehow influence the increase in UV indices in the atmosphere [32]. In the coastal
part of the Northeast, the lowest values of the mean and standard deviation of radiation may be related

to the presence of Atlantic Forest areas that still resist in this region.
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Figure 3. On the left is the mean, and on the right is the standard deviation of solar radiation (% ) in

the Brazilian Northeast.
In order to analyze the multifractality properties of the time series of solar radiation in the Brazilian

Northeast Region, the anomalies of 137 meteorological stations distributed throughout the nine states
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were calculated. In applying the MFDFA method, we used the MFDFA Package [33]. The anomalies 48

were calculated using the equation below:

b, = 50 )

s
g

where x; stands for the hourly values observed in the solar radiation time series, X; is the average of the
time series observations, and g; is the value of the standard deviation of the solar radiation series. To
exemplify the process of implementation and output of the results, we chose a station randomly to
represent the graphs built with the MFDFA method.

According to Figure 4A, the fluctuation function F;; (n) presents a linear behavior in the logarithmic
scale g of (—10 a 10); this means that the solar radiation series indicates a multifractality process over
time. In Figure 4B, the generalized Hurst exponent h, has a decreasing behavior. The Rényi exponent
T(q) (Figure 4C) points out the nonlinear form of the process. The multifractal spectrum f()(Figure 4D)
reveals a concave downward curve, confirming the presence of multifractal in the hourly time series of

solar radiation for this randomly selected meteorological station.
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Figure 4. Behavior found with the MFDFA method for the series of solar radiation anomalies
in Macei6-AL. (a) Fluctuation Functions, (b) Generalized Hurst Exponent, (c) Rényi Exponent, and (d)

Multifractal Spectrum.



We shuffled the series of solar radiation anomalies, then applied the MFDFA method again to 49
determine the multifractal complexity characteristics in all stations geographically distributed in all nine
states of the Brazilian Northeast region. The shuffling was performed with the mathematical expression
random = 10.000 X x;, repeating 1000 times with different random seeds.

From the series of anomalies and randomized series, it was possible to analyze the causes of
multifractality present in the processes: (i) Long-range correlations; and/or (ii) The probability density
function [34]. We observed in Figure 6 that all randomized series showed weaker multifractality in
relation to anomaly series. This fact indicates that the long-range correlations and the probability density
are the main causes of the multifractality observed in the radiation series. Figures 5, 6 and 7 represent
the variation of the multifractal complexity parameters, ay, W, and r, for the original time series
(anomalies) versus the scrambled series.

Table 1 shows some stations where the cause of multifractality was the probability density function.
This occurs when the value of W, randomized is approximately equal to the value of W, of the series of

anomalies, that is when the difference (AW) between them is equal to or close to zero.

Table 1: Multifractal complexity parameters for some meteorological stations.

Station Latitude  Longitude W anomalies W randomized AW =W,—-W,
Wa) W)

Iguatu-CE -6.396 -39.268 0.509 0.493 0.016

Barreiras-BA -12.091 -44.592 0.491 0.461 0.029

Itaporanga-PB -7.516 -38.233 0.638 0.591 0.048

Alvorada do Gurgueia-PI -8.441 -43.865 0.568 0.512 0.056

Apodi-RN -5.626 -37.815 0.504 0.439 0.065



Bom Jesus da Lapa-BA -13.251 -43.405 0.543 0.473 0.06950
Recife-PE -8.059 -34.959 0.513 0.439 0.074
Imperatriz-MA -5.555 -47.459 0.508 0.433 0.075
Nossa Senhora da Gloéria-SE -10.130 -37.251 0.716 0.639 0.077
Picos-PI -7.071 -41.404 0.551 0.472 0.078
Colinas-MA -8.150 -48.783 0.538 0.457 0.081
Correntinha-BA -13.332 -44.617 0.533 0.448 0.085
Santa Rita de Cassia-BA -11.002 -44.525 0.511 0.426 0.085
Ribeira do Amparo-BA -11,046 -38,432 0.661 0.570 0.091
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Figure 5. Comparison between the multifractal process complexity parameters of the original series
versus the randomized series: a, (blue) anomaly series and a, (red) randomized series for all solar

radiation series.
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Figure 7. Comparison between the multifractal process complexity parameters of the original series
versus the randomized series: r (blue) anomaly series and r (red) randomized series for all solar radiation

series.

Figure 8 exhibits the results obtained after applying the IDW method to estimate the MFDFA
parameters in places where information on these parameters was not available. We notice in Figure 8A
that all the values estimated for the parameter a, were greater than 0.5, indicating that the solar radiation

series present persistent behavior. This situation justifies that the observed values did not decrease over



these 12 years of study. We also note that long-range correlations are present in the analyzed series 52
because the closer ay — 1, the longer the long-range correlation period is present in the solar radiation

series.

In the state of Maranhao, specifically on the coast, a greater presence of long-range correlation was
observed among all the states of the Northeast region. In the southern and northeastern parts of the state
of Bahia, the highest values of a, were observed, revealing a more extanding period of long-range
correlation. In the states of Paraiba and Sergipe, the presence of long-range correlation was observed in

the coastal part. In the other states, the values of @y behaved uniformly.

In Figure 8B, the spectrum width (W) values ranged between (0.490 and 1.673). The highest values
of the width of the multifractal spectrum were observed in Maranhao. This state is under the influence
of the Amazon rainforest and is close to the equator. What may be influencing such expressive values
of the spectrum width W. The states of Bahia, Piaui, and Paraiba presented relatively high values of
spectrum width (W) in the Atlantic Forest and Caatinga biomes.

One can see that these values decrease in the East/West direction. The lowest values were observed
in the Cerrado portion, in the west of Bahia and Piaui and southeast of Maranhao. The greater the width
of the multifractal spectrum, the greater the complexity of the stochastic process that generates the
analyzed series and, consequently, the higher the difficulty in making predictions. In this case, the
western regions of the states of Bahia, Piaui, and Maranhao are the places where the best regions to
perform solar radiation prediction were observed, as well as the coastal part of Rio Grande do Norte,
East/West of Pernambuco and West of Paraiba.

Figure 8C shows the map of Asymmetry values (), which ranged between (1.751 and 5.188). It was
possible to observe that all values of r were greater than 1. Based on this spatial information, we can
say that the multifractality of hourly solar radiation in the entire Northeast region is more influenced by

small fluctuations.
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Similar work to our approach was carried out in the Guadeloupe archipelago located in the
Caribbean. The authors observed that time series of solar radiation contribute to long-range correlations
and small and large fluctuations [35, 11]. This type of characteristic can be caused by the influences of
air masses. It is possible to observe that the locations with the highest asymmetry values are
geographically distributed in the North and Northeast parts of the state of Maranhao, as well as in the
southern part of Bahia and in some areas distributed in the central part of this state (Figure 8C). In these
areas, the influence of air masses associated with the southeast trade winds [36] often hinders the arrival
of rains during the winter period. This episode leads to an increase in solar radiation rates. Unlike other
regions, during the winter period, the air masses can move forward with more force, and there is a
decrease in the effect of solar radiation.

In specific years, the main phenomena that influence the climate in the Northeast region of Brazil
are El Nifio and La Nifa. In El Nifio years, there is a gradual decrease in the amount of rainfall in the
region [37]. On the other hand, in years of the presence of the La Nifia phenomenon, the Northeast
region is more susceptible to the more constant presence of rain in the region [38]. Such phenomena act
directly on the increase or decrease of solar radiation in the Brazilian Northeast. Our findings contribute
to a better understanding of the multifractal process of solar radiation series. The MFDFA method
proved to be efficient in characterizing the regimes and behavior of the solar radiation series in a large
study area such as the Brazilian Northeast region.

With the increasing need for investments in new energy sources, the energy generated from solar
radiation becomes an efficient source to meet the energy demand across the planet and as a

complementary source to existing energy sources. In Brazil, solar energy already has a production of



approximately 16 GW (Gigawatts) of installed photovoltaic solar energy. Also, according to Associagdo 54
Brasileira de Energia Solar Fotovoltaica (ABSOLAR), Brazil failed to send about 23.6 million tons of
CO2 into the atmosphere with the generation of electricity. Another significant result of the investment
in photovoltaic energy is in the economic part since approximately 500 thousand jobs have already been

generated, and more than R$ 86.2 billion have already been applied in new investments for Brazil in

recent years [39].

CONCLUSION

In this article, the multifractal process of the hourly anomalies of the time series of solar radiation in
the Northeast region of Brazil was investigated. For that, we applied the MFDFA method in the series
of hourly anomalies over 12 years studied and obtained the parameters of multifractal complexity «g,
W and r, as well as the multifractal spectrum in each of the 137 stations. We observed that of the 137
meteorological stations studied, in 14 of them, the probability density function was the leading cause of
the multifractality process present in the time series of solar radiation. In the remaining 123 stations, the
leading causes of multifractality present in the series were long-range correlations and the probability
density function. In future works, a monthly application over the years using the MFDF A method should
be made in order to compare the characteristics of multifractality in the series, as well as a future study

for the entire Brazilian territory.
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Abstract

Due to the need to reduce the emission of carbon dioxide in the atmosphere as a result
of the greenhouse effect, there is a growing demand to intensely reduce the use of fossil fuels
in energy generation to meet the energy demand of the population, which is only growing.
Among the options for renewable sources, we highlight wind energy, which is clean and
inexhaustible. Wind energy can contribute to the new era of energy sources that do not
pollute the environment. The contributions of wind energy are countless so that nations
around the planet can reach goals established in the Paris Agreement, in which, by 2030,
greenhouse gases must be reduced by half and zeroed by 2050. Brazil is one of the countries
that possess great potential for generating energy from renewable sources. In particular, the
energy from the winds. The knowledge and understanding of wind speed behavior at different
heights and the use of mixtures of probability distributions for estimating the potential of
wind generation in large territorial areas are of paramount importance for several reasons.
Among them, to evaluate the types of wind turbines that best suit a given height and the
potential for energy generation in each region, reducing uncertainties in the development and
distribution of wind encrgy. In this work, we apply the Weibull-Weibull distribution mixture
in adjusting the wind speed series of each of the 575 meteorological stations at six different
heights. Next, we estimate the wind power density. In estimating the Weibull-Weibuill
parameters, the Expectation-Maximization (EM) algorithm was used. With the results
obtained at each meteorological station and using the Inverse Distance Weighting (IDW)
method, we predicted wind energy generation at points where there was no information about
wind speed. We observed in this study that over large areas, the Weibull-Weibull distribution
mixture proved to be excellent in estimating the wind energy density distribution. It was
able to provide a suitable fit for the different regions of Brazil. The results obtained here
demonstrate that the model used can be an excellent candidate to be applied in other
countries as a form of integration with other energy sources in a complementary way. In
Bragzil, we indicate this result in the integration of Solar, Biomass, and Hydro energy sources,
making the country not suffer from rationing due to lack of energy, given that an auxiliary
energy source could be distributed quickly and efficiently using the subsystems existing
electrical. This action can help avoid using energy sources that pollute the environment,

1

58



59

such as the electrical energy obtained by nuclear power plants, which are used in critical
situations.

Keywords: Weibull-Weibull; Wind Power Density; Carbon dioxide; Forecast;
Expectation-Maximization.

1. Introduction

The world will have a projected 8.5 billion inhabitants by 2030 [1]. The planet is in
the process of changing its economic structure, and electricity generation act of one of the
ways to supply all this population growth [2].In this sense, there is a demand to invest in
new energy sources to meet the population and industrial growth demands. However, one
of the biggest concerns in today’s globalized world is global warming [3].In 2015, in Paris,
about 197 countries signed some proposals in the so-called Paris agreement, committing
themselves to reduce the earth’s warming by 1,5°C [4, 5]. Countries like China, the United
States, India, and Russia are the most significant greenhouse gas polluters [6]. In South
America, Brazil plays a crucial role in reducing greenhouse gases, as it holds 60% of the
largest forest on the planet, the Amazon rainforest [7]. At the 26th (COP26) Conference of
the Parties of the (UNFCCC) United Nations Framework Convention on Climate Change,
in Glasgow, Scotland, Brazil committed to reducing greenhouse gases by about 50% [8]. For
this, investments in renewable energy sources can contribute to this reduction of gases since
they are clean and inexhaustible sources. Germany, for example, has committed that by 2030
100% of all energy generated will come from sources that do not pollute the environment
[9, 10]. The European Union has adopted the European Green Deal, which envisions zero
greenhouse gas emissions in all bloc countries by 2050 [11].

Researchers generally seek ways to estimate the energy consumption needed to meet
the world’s demand [12]. In order for the climate to improve in certain regions, such as
those that suffer from heavy rains or hurricanes due to deforestation, for example, and for
the reduction of the greenhouse effect in the atmosphere to be achieved, it is necessary to
invest in global policies that adopt low-cost renewable energy sources emission of pollutants
[13]. From this perspective, renewable energy research has increased in recent years. As an
efficient and ecological alternative, the wind is one of the primary sources of clean energy,
as it is an inexhaustible, renewable, accessible, and sustainable resource [14]. Wind energy
emerges as one of the leading clean and renewable energy sources, with predictions for the
year 2050 to supply about 1/4 to 1/3 of all global electricity demand [15]. Thus, wind
speed has been proposed as a raw material for exploration without pollution. The process of
converting kinetic energy into wind energy takes place through the movement of air masses;
that is, from the wind speed, wind turbines are moved, and energy generation takes place
[16]. However, some locations have characteristics that are more favorable to wind energy
development than others.
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Countries such as China, the United States, Germany, India, Spain, the United Kingdom,
and France have frequently stood out as significant wind energy producers [17]. In Brazil, the
Northeast region has a high potential for wind generation, and several regional investments
are being made [18, 19, 20]. In particular, the state of Bahia is a major producer of energy
from wind [21]. On the other hand, the state of Rio Grande do Norte is the biggest producer
of wind energy in Brazil [22]. Still, in Brazil, wind energy is the country’s second primary
energy source [23]. Wind energy contributes to the country being among the world’s largest
wind energy producers.

Due to the complexity present in wind speed time series, several efforts are constantly
employed to characterize the dynamics of these series to develop forms of planning for the
generation and distribution of wind energy to society. Statistical models such as the Weibull
[24]., Gamma [25], Lognormal [26], and Rayleigh [27] probability distributions have broad
applications in modeling wind speed series. However, it is only possible to determine a
probabilistic model that applies to some historical series. Probability distribution mixture
models are essential for predictive models to be applied to the wind potential of regions
considered favorable for wind energy generation.

In hourly series with wind speed bimodal behavior, two-parameter probability distribu-
tion models fail to fit well [28, 29, 30]. Therefore, mixtures of probability distributions are
the most used in these situations, presenting a better fit when compared to distributions
with only two parameters [17]. Khamees et al. (2022) [31] used mixtures of probability dis-
tributions of two and three components generated from the combination of Weibull, Gamma,
and Inverse Gaussian distributions to verify the adequacy of mixture models to bimodal se-
ries. Ouarda and Charron (2018) [28] investigated the potential of mixtures of homogeneous
and heterogeneous distributions to model bimodal wind speed series, and ten models of the
combination of components were used, such as Gamma, Weibull, Gumbel, and Truncated
Normal. Indhumathy et al. (2021) [32] used the mixture of the Weibull distribution from the
linear combination of two and three components to estimate wind speed series. Wang and
Liu (2021) [33] employed the Expectation-Maximization algorithm to estimate the mixing
parameters of the two- and three-component Weibull distribution in the multimodal wind
speed series adjustment.

In estimating wind generation potential based on probability distribution, estimating
parameters of distribution functions is of paramount importance in wind speed applications.
There is a range of numerical and artificial intelligence methods that have been developed to
improve the estimation of distribution parameters, such as Moment Methods [34], Maximum
Likelihood Method [35], Empirical Method [36], and artificial intelligence methods, such as
Particle Swarm Optimization (PSO) [37] and Genetic Algorithms (GA) [38]. In our work,
we used the Expectation-Maximization (EM) numerical method to estimate the mixing
parameters of the Weibull-Weibull distribution. This method was successfully used in fitting
bimodal wind speed series in the Northeast region of Brazil at an altitude of 10m from the
surface [17].

In view of this, this work aims to estimate the potential of wind energy at different heights
throughout the Brazilian territory, using models of mixtures of probability distribution and
predicting the estimate of wind energy where we do not have prior information based on the
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Inverse Distance Weighting (IDW), method predicts a value for some unmeasured locations
using values sampled from surrounding weather stations. As far as we searched, we did not
find a study similar to the work presented here: with many meteorological stations and using
the Weibull-Weibull mixing distribution at different heights. The methodology presented
here can be helpful in countries that produce wind energy above their consumption capacity
and wish to sell their surplus to neighboring countries. In this way, those countries that
do not produce enough wind energy to meet their domestic demand could be supplied with
energy generated by another country. Consequently, some countries may decrease the need
for energy generated from sources that pollute the environment. For the global temperature
to stay below 2°C', transformations in the electrical system and investments in low-carbon
technologies would help countries meet the Paris agreement’s goals [39].

The remaining parts of this article are organized as follows: in Section 2, we provide an
overview of how the hourly series of wind speeds across Brazil were obtained and treated
using the Python programming language and the R software for estimating wind speed series
for higher heights from wind series 10m from the surface. In section 3 through Hellmann’s
Exponential Law Equation we determine wind speed to upper heights. In Section 4, we
present the Weibull-Weibull distribution mixing model. Section 5 shows the Expectation-
Maximization Algorithm’s development process for estimating the Weibull-Weibull distri-
bution parameters. In section 6, we show the Wind Power Density estimates. Section 7
presents Inverse Distance Weighting to predict estimates in places where no information
was available. Section 8 presents and discusses the results obtained with the mixture model.
Finally, in Section 9, we present the conclusions of the article.

2. Description of geographic location and data source

The data used in this work were obtained from the Instituto Nacional de Meteorol-
ogy (INMET - refers to the National Institute of Meteorology) and correspond to hourly
measurements of wind speed in m/s, from 2000/01/01 to 2022/03/01, in the five Brazilian
regions ( Northeast, North, South, Southeast, and Midwest). In the study, 575 automatic
stations were used (as shown in Figure 1) at 10m above the ground height. Data were
downloaded in real-time from the INMET website and processed using Python. Analyzes
were performed using the R software, version 4.1.3.

The Brazilian territory is comprised of around 8,516,000 km? [40]. Brazil is divided into
five regions: Northeast, North, South, Southeast, and Midwest, according to estimates by
IBGE (refers to the Brazilian Institute of Geography and Statistics). The Northeast has an
estimated population of 57,667,842 inhabitants. In the North, there are 18,906,962 inhabi-
tants; in the South, 30,402,587 inhabitants; in the Southeast, 89,632,912 inhabitants; in the
Midwest, accounting for fewer inhabitants, there are 16,707,336 [41]. The total population
of Brazil exceeds 213 million inhabitants, with a Gross Domestic Product of R$ 8.7 tril-
lion in 2021 [42]. Brazil occupies the fifth place among the most populous countries in the
world, behind China, with the largest population (about 1.3 billion inhabitants), India with
1.1 billion inhabitants, the United States with 314 million inhabitants, and Indonesia with
229 million inhabitants [43]. In terms of territory size, Brazil is smaller than the Europe

4



62

64°0'W 44°0'W

5°0'S

. . N
Geographic location
= State Geographic Location

[ Braziil
2 ~ Brazil Altitude (m)
o 3 Brazil Altitude
@ 2.545
-22
[ South America
0 500 1.000 km
[

64°0'W 44°0'W

Figure 1: Geographic location of meteorological stations in Brazil.

continent, whose territory is around 10,180,000 km?. However, Europe is made up of 48
countries.

3. Estimation of wind speed at different heights

To estimate the monthly wind power density throughout Brazil, we collected the wind
speed series (at 10m from the surface) collected on the INMET website. Subsequently, we
estimate the wind speed series for the heights (25m, 50m, 75m, 100m, 120m) based on
Hellmann’s exponential law, as seen in Eq. 1 below:

o) 0

where v is the wind speed at height h, vy is the wind speed at height hg, and « is the
roughness coefficient relative to the nature of the terrain [44].
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4. Mixture distribution

In the literature, there is a range of models of unimodal probability distributions with
only a single component. Often these models may need to be more suitable for applying
frequency to wind speed data. To solve this modeling problem, component mixture models
are the most suitable when the series presents a bimodal behavior. In some works, many
authors have already achieved satisfactory results using models of mixtures and probability
distributions, known as multicomponent distributions [45].

Formed by the linear combination of two or more components of distributions, the prob-
ability density function (pdf) of a mixed distribution is given by Eq. 2 [28]:

flo;w,0) = ;wifi(v; 0;), (2)

where 6;s are the parameters of the i-th distribution, f;(v;#6;) are the independent distribu-
tions of the i-th components, d is the number of components, and w; are the weights of each
mixture, so that 3% ;w; = 1. The mixture of two distributions is given by the equation
below:

fo;w,01,05) = wfr(v;6r) + (1 —w) fov; 0s), (3)
where the value of w must be in the range 0 < w < 1, the parameter vectors 6; and 6,
correspond to the first and second components of the distribution.

From this, different combinations of distribution mixtures can be generated, such as
Gamma-Gamma [46], Wiebull-Weibull, Weibull-Gamma, Gamma-Weibull [47], Weibul-Burr,
Weibull-Lognormal, Weibull-Gumbel, among others existing in the literature [26]. In this
article, we work with the mixture of two Weibull distribution models, given in Eq. 4, known

as Weibull-Weibull [17].
k ki1—1 k1 k ko—1 ko
ffao(v) = wl—l (U> exrp (—U> + w2—2 <v> exrp (_v) , (4)

C1 \C C1 Co \C2 Co

where v > 0, w; = w and wy = (1 — w), that is, wy + wy = 1 and kq, ¢y, ko, ca > 0.

5. Algorithm Expectation Maximization EM

The iterative Expectation-Maximization (EM) algorithm was developed with the aim of
fitting models of mixtures of probability distributions. The EM iteration method is based
on the maximum likelihood method. EM presents reasonable estimates of parameters in
Weibull-Weibull mixture models applied to wind speed series [17, 48].

Given a time series of hourly observations of wind speed v = (v, va,v3, -+ -, vy,), we will
define the likelihood function of vector v based on the Eq. 5 in the defined sequence:

k.
n d kfj v kj—1 7(%) J
f;0)=1]F(vi;0) =[] w;~2 <) exp \% (5)
- 1 C; \C;
i J
where d is the number of mixture components, w; are the weights of ecach mixture, k;
and c; arc the shape and scale parameters of the Weibull probability density function and
O = (wy,wa, -+ ,wq, k1, ko, -+ kg, c1,02,- - ,cq) is a set of parameters.
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The log-likelihood function can be defined using Eq. 6 [49]:

N d ko (o5t 0\ "
L(v;0)=> log)» w;—* <Z> exp” <Z> (6)
=1 =1 G \G

j Cj

As the log-likelihood function is complex in obtaining the set of parameters ©, they
cannot be obtained directly through the partial derivative. In this case, we use the EM
iterative algorithm for estimating the parameters of the five-parameter Weibull distribution
function.

The Expectation-Maximization algorithm consists of steps E and M [49]:

1. Step E: Define the function Q according to the equation below
i=1 j=1 i=1 j=1

N d N d v; b
Q=2 mijlogwi+Y_ > ~ix |log kj —log ¢; + (k; — 1)(log v — log ¢;) — ()

where «;; is the prior probability of the j-th observation coming from the v; mixture
component [50], the d-th components of the Weibull-Weibull mixture are obtained by

Eq. 7:
fvis ky,c) w; (”i)kjil emp_(%)kj
Wy J\V; Ry, Cy Je; \¢j
Vi = Elz) = = Jw-f(vz- k] by J v,J T (7)
= I G) e (8) e

2. Step M: Find the log-likelihood maximization for the estimated parameter of the
Weibull-Weibull probability distribution by maximizing the function Q.

5.1. Algorithm execution process EM
The Algorithm 1 shows the basic structure of the EM algorithm.

Algorithm 1: Expectation-Maximization algorithm.

Input: v ={vy,--- ,un} /* v is the wind speed */
Parameter Initialization: w©®, /* Initial guess */
/* Iterations */

1 for t = 1:T do

/* E-step */
2 QY =qQ (Q(t—1)> /* Update w and @ */
/* M-step */
3 0" = arg ¢ maxL(00V;v) /x Update @ */
4 end
5 return éleE /* Maximum Likelihood Estimator */
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6. Wind Power Density - WPD

In the wind energy sector, the frequency of the wind speed series is used to estimate
wind energy density [51]. The wind power density for the Weibull-Weibull distribution mix
f fa2(v) is defined as follows:

1 _.
WPD = 5/)1751/1//7712 (8)

WPD(v) = /:OO ;p?)gffgﬁg(Y)) dvW /m? 9)

where p is the air density, v* is the wind speed (in m/s) cubed, ff22(v) is the Weibull-
Weibull probability density function, ©3 is the average wind speed cubed. For this article,
WPD estimates were calculated across Brazil at different heights. The different heights of
wind speed were estimated by Eq.1. The difference between Eq. 8 and Eq. 9 is that the first
considers the average wind speed cubed, and the second considers the probability distribution
that was fitted to the wind speed series. This process is essential for the generation of wind
energy in the country. Such energy can be integrated with other types, such as hydro power,
and those from renewable sources, such as solar energy and biomass energy, both important
sources for Brazil. Investments in these types of energy are of great importance for Brazil
to comply with the Paris agreement to reduce greenhouse gases and reduce the risks of lack
of electricity due to climate change [52]. By 2029, Brazil aims to double its current wind
energy capacity [53], further reinforcing the importance of a study like this. The perspective
for Brazil until the year 2027 is that investments in technologies can replace the sources of
thermoelectric plants powered by diesel and fuel oil [54].

6.1. Inverse Distance Weighting (IDW)

In this work, we used the deterministic spatial interpolation method Inverse Distance
Weighting [55]. In the literature, this method has been applied in different studies, obtaining
good results with spatial interpolation in the mapping of annual precipitation in Bosnia and
Herzegovina [56], wind speed estimation for Iraq [57], the study of precipitation and trends
over the basin Mahaweli, Sri Lanka [58] and monthly rainfall in Thailand [59], for example.
This method was initially proposed by Shepard [60]. The IDW is based on the idea that
the closer the estimated value is to the real one, the greater the influence on the predicted
value of the more distant ones. The IDW mathematical equation can be defined from the

following formula [61]:

A " 1/d(so, s;)P
Z(so) = Z Z;z:l(l/d(so’ Si)P)Z(Si)’

i=1

p>1 (10)

where Z(SO) is the estimated value for each point is the observed value in sq, z(s;) is the
distance between ordered pairs sy and s; and p is a parameter where the value is defined.
In this article, the value of p = 3 was used. A mesh of (0.1,0.1) was used to obtain good
results, equivalent to an area of 11km?2.
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7. Results and Discussion

Based on information from 575 automatic stations distributed throughout the Brazilian
territory, Figure 2 shows the maps of the mean statistics and standard deviation of the
analyzed hourly historical series. Wind speed information was spatialized for all of Brazil
using the IDW method. Although the analyses were carried out for all months studied, we
illustrate the results for the month with the lowest average wind speed at the height of 120m
and for the month with the highest average: May and September, respectively.
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Figure 2: On the left is the mean and on the right is the standard deviation of Brazil’s average hourly wind
speed from 2010-01-01 to 2022-03-31. Upper figures are for May and lower figures are for September

The highest average speed in Brazil was observed in the Northeast region, followed by
the country’s South, Southeast and Midwest regions. Specifically, the coastal part of the
Northeast region, with emphasis on Rio Grande do Norte and Ceara, presented the highest
average wind in all of Brazil. On the other hand, the region with the lowest average wind
incidence was the Brazilian North region. One reason for this is that this region contains
the Amazon rainforest, which directly and indirectly influences the climate in Brazil. In
the North, the average wind for May ranged from 2.0 to 7.5m/s. In the Northeast region,
the average varied between 5.0 and 12.0m/s. In the South Region, the average wind varied
between 3.0 and 8.0m/s. While in the Southeast and Midwest regions, the wind speed varied
between 3.0 and 8.0m/s.
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For September, the country’s North region had the lowest average wind speed (around
4.0m/s). On the other hand, the South and Northeast regions presented an average above
8.0m/s, which is excellent for installing wind farms. Furthermore, the Southeast and Mid-
west regions presented relatively low averages for wind farm installations, except for the
coastal areas of Rio de Janeiro and Espirito Santo. In Brazil, it was found that the farther
from the equator, the greater the variability in the wind speed series. The South, Southeast,
and Midwest regions have the greatest dispersion in the series. The North region had the
lowest standard deviation.

Fig. 3 illustrates the wind speed (in m/s) at 120m for May and September in all Brazilian
regions. It is crucial to observe regions with wind speeds exceeding 3.0m/s, as a wind turbine
only generates enough energy to supply a subsystem if it reaches this minimum speed [17].
The Northeast and South regions have more wind speeds for both May and September.
The North region had the lowest percentage of wind. For more than 90% of the time, the
Northeast region indicated that the wind speed is more significant than 3.0m/s. However,
in the North region, only a few meteorological stations showed a percentage of wind speed
values above 3.0m/s. These stations do not even represent 50% of the total, thus making a
possible installation of a wind farm in this locality unfeasible. The Southeast and Midwest
regions, on average, have percentages of wind speed values above 3.0m/s that vary from
75% to up to 100% of the total observations in some stations. In the case of the installation
of a wind farm in the Northeast, the wind turbine can spend more than 90% of the time
generating energy in the region, as well as in large part of the South of the country.
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Figure 3: On the left, the percentage of values above 3.0m/s for the month of May. On the right, the
percentage of values above 3.0m/s for the month of September at a height of 120m.

Figure 4 shows the estimates of the six parameters for the mixture of two Weibull-Weibull,
resulting from the mixture of a Weibull(k;, ¢;) and another Weibull(ks, ¢2), with a weight
parameter w; for the first Weibull and ws, for second Weibull. The Weibull-Weibull mixture
has shown promising results regarding series with bimodal behavior. A similar result was
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seen in the work of Carta and Ramirez [62]. The parameters of the Weibull-Weibull mixture
were obtained with the EM algorithm, as shown in Section 5.

Through the spatial mapping of the parameters of the Weibull-Weibull mixture, it was
possible to identify the geographic location of the Brazilian regions according to their climatic
and topological characteristics in cach of the regions of Brazil. The five Brazilian regions
have different characteristics. The Northeast is dry and arid [63], and the average annual
rainfall is 500mm in the central part of the region and 1500mm in the coastal part [64]. The
North region is influenced by the Amazon rainforest and has an average of 2000mm rainfall
[65]. The Southeast has reasonable annual precipitation rates (around 1314mm) [66]. The
Midwest is characterized by different precipitation conditions, such as the South Atlantic
Convergence Zone (SACZ) [40]. The southern region is characterized by having a cold and
humid climate for most of the year, with the Pampa Biome and the Atlantic Forest Biome
[63]. The results of this article can contribute to a better understanding of wind speed
behavior in regions close to the equator, extensive forests such as the Amazon, and areas
of Caatinga, Cerrado, Atlantic Forest, Pampa, and Pantanal. In addition to areas close to
the coastal marine, Brazil has approximately 7.300 kilometers of the coastal area [67]. This
fact can directly affect the behavior of the wind speed series in different Brazilian regions,
as there are differences in energy production between regions.
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Figure 4: (a) Scale 1, (b) shape 1, (c) scale 2, (d) shape 2, (¢) wl and (f) w2 for the hourly average wind
speed series in Brazil.

Figure 4 presents the estimates of the Weibull-Weibull parameters for a height of 120 m.
In the coastal area of the states of Pernambuco, Paraiba, Rio Grande do Norte, Ceara, Piaui,
Maranhao, Rio de Janeiro, and in parts of the state of Bahia, these coastal areas, according
to the parameter c;, showed good potential for the installation of wind farms. The highest
values found for ¢; were in the coastal region of Rio Grande do Norte, in the coastal and
central parts of Ceard, in the east and west of the state of Pard, in the Northeast of Mato
Grosso, and a significant part of the state of Bahia. Similar characteristics were observed in
the coastal part of Rio Grande do Norte [68, 69]. The lowest values of ¢; are concentrated in
the states of Santa Catarina, Mato Grosso do Sul, Parana, Goids, Acre, Rondonia, Roraima,
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and Amap4d, the latter two being above the equator. As for the parameter cs, the highest
values are concentrated among the states of Bahia, Pard, and Amapa, the latter two partially
above the equator. For the parameters of k; and ks, the North region presented the lowest
values concerning the other Brazilian regions. For parameters w; and ws, we did not observe
a pattern of behavior in the investigated regions.

According to our analyses, the ordering of regions for better use of the wind resource
(considering its greater availability) is Northeast, South, Southeast, Midwest, and North.
This result is coherent with the literature since Brazil’s Northeast region has the largest wind
power generation, followed by the South and Southeast regions [67]. From the parameters
of the Weibull-Weibull distribution mixture, it was possible to estimate the Wind Power
Density of the five Brazilian regions, as we can see in Fig. 5.

Aquila et al. [70] used the two-parameter Weibull to estimate wind energy in the 63
main cities of Sdo Paulo (Brazil). The author noted that some cities had higher costs in
implementing a wind farm. Judrez et al. [71] also used the two-parameter Weibull in their
work and showed remarkable growth in the wind energy sector for the year 2021. Duca,
Fonseca, and Oliveira [72] used the Gamma and Weibull probability distributions with two
parameters for forecasting wind speed in Bahia. In this study, it was observed that Gamma
had a better fit in June, while in September, Weibull had a better fit in the series. The
authors also suggest in future works the use of probability distribution mixtures in a more
significant time window for a better performance of the models in the adjustments of the
wind speed series.

We use probability distribution mixture models via the EM algorithm to improve wind
power estimates in the five Brazilian regions. The series used in these works present a
bimodal behavior. Therefore, the Weibull-Weibull mixtures present good results in long-
term hourly series [17]. May be proved to be one of the months with the lowest potential
for wind energy generation in Brazil. The Northeast and South regions were the two regions
that showed the most significant potential for wind generation. September was the month
with the most significant potential for wind energy generation. The Northeast and South
regions were the ones with the highest energy potential. The North of Brazil had the lowest
wind potential, followed by the Southeast and Midwest, respectively. The results showed
that the Northeast and the South are the two central regions for installing wind farms in
Brazil.

In Figure 7, we present the results for WPD in each of the five Brazilian regions for all
12 months of the year. In the Northeast region, we note that between January and May,
there is a decrease in the wind potential, where in May, at the height of 100 m, the WPD
value was 295.1259 TW/m?, and at the height of 120m the WPD was 347.7526 W/m?. From
May, there is a gradual increase in wind generation potential. The projection peak for the
average wind energy generation occurs in September, in which the WPD at the height of
100m was 553.386 W/m?, and for a height of 120 m, the WPD estimate was 652 .0656
W/m?2. In the Northeast region, September has almost double the potential of May. This
fact may be related to the dry period in September, contributing to an increase in the average
wind speed and, consequently, a more significant potential for wind power generation. In
Figure 7, one can see that the other regions of Brazil have the same behaviors of Wind
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Power Density, except in the South Region, where August has the highest WPD values.
From the information obtained in each meteorological station, new information was forecast
where there still needed more information on wind generation potential based on the IDW
method.
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Figure 5: On the left is the Average Wind Power Density, and on the right is the Wind Power Density based
on the Weibull-Weibull distribution for Northeast Brazil from 2010-01-01 to 2022-03-31. Upper figures are
for May and lower figures are for September.

Thus, we can identify the possible places where wind farms can be installed. The North-
east region had the most significant potential for wind power generation in the country. In
second place is the South region, third is the Southeast region, fourth is the Midwest region,
and fifth is the North region. The wind energy projection for the month with the greatest
potential for energy generation in 120m of the Northeast is 1465.167 W/m? in Septem-
ber. In the South region, August’s estimate was 1098.041W/m?. In the Southeast, it was
758.8887W /m? for August. In the Midwest, it was 744.854W/m? for September, and in the
North, it was 569.3334W/m? for September. The month with the lowest wind power genera-
tion potential for the Northeast region was April, with an estimated value of 690.935W /m?.
The South region has a smaller production in January, April, and March with amounts
of 762.0361 W/m?, 758.974 W/m? and 755.036 W/m?, respectively, with slight variation
between these observed months.

The lowest production occurred in the Southeast and North regions in April and May. For
the Southeast region, the month of May presented an estimate of 427.2629W/m?, while for
the North, in April, the estimate was 281.5192. In the Midwest region, April was the month
with the lowest density of wind energy generation, with an estimate of 449.9184W/m?. We
can then define the wind potential density in all five Brazilian regions at different heights
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based on the hourly wind speed series. Mixing the Weibull-Weibull distributions made it
possible to adjust the different series spread across the country. The model proved efficient
in adjusting wind speed series in large regions and different types of geography. The Weibull-
Weibull model can also be used in large arcas such as Brazil and, for example, continents
such as South America and Europe. A similar result using the Weibull-Weibull mixture was
observed by Santos et al. [17], where the authors showed that for the Northeast region of
Brazil, at the height of 10m from the surface, mixing this model using the EM algorithm
achieved excellent results.

A significant result is that the Northeast region has the potential to generate wind energy
about four times more when compared to the North region. With this result, the Northeast
region will likely be able to produce wind energy to supply its entire population and sell or
distribute its surplus to the North region. During the so-called wind harvest, which runs
from June to December, the wind energy generated is sufficient to meet the entire demand
of the Northeast region and about 20% of the demand of all Brazilian people [73]. In
Brazil, energy is distributed in four subsystems: South (S), Southeast/Midwest (SE/CW),
Northeast (NE), and North (N) [74]. To distribute the surplus to energy companies in the
regions, existing subsystem networks could be used and reduce energy generation costs in
the country.

In the same way, the North region can send the excess energy produced in its hydroelectric
plants to the Northeast since the Northeast is a region that suffers a lot from a lack of rain.
In the same sense, the South Region of Brazil can distribute surplus energy to neighboring
regions such as the Southeast and Midwest, and it can sell surplus energy to neighboring
countries such as Paraguay, Argentina, and Uruguay. The projection of Brazil’s energy
integration when comparing the years from 2015 to 2050, going from 130.1GW to 283.1GW,
with a growth of 117.6% in the year 2050 [75].
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Figure 7: : Average Wind Power Density Estimate using the Weibull-Weibull distribution for the five regions
of Brazil from 2010-01-01 to 2022-31-03.

The authors emphasize the importance of this work in investments in technologies to
help integrate wind energy with other energy sources that already exist in Brazil, mainly
the Wind-Hydric integration. In this integration, it would be possible to produce hydrogen as
a new energy source, as discussed by Nadaleti et al.[76], using the surplus energy generated.
In addition, other integrations are possible, such as Wind-Solar and Wind-Biomass. This
could greatly help the country to reduce greenhouse gases in the atmosphere. Thus, Brazil
would meet the goals agreed upon at the United Nations Conference on Climate Change at
COP26 in Glasgow, Scotland, in 2021 [77], where Brazil committed to reducing greenhouse
gases by 50% by 2030 [8]. At COP26, around 29 countries, including the United Kingdom,
Canada, Germany, and Italy, committed to investing in clean and renewable sources by 2022.
Brazil had already committed to achieving the Paris target of limiting global temperature
to 1.5 oC [66]. In this way, wind energy can contribute to Brazil achieving this critical
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reduction of the greenhouse effect, being an alternative form of new sources of income and
technologies in land management through government incentives [77]. Faced with such an
adverse scenario caused by the COVID-19 pandemic, investment in renewable energy can
collaborate with GDP growth in the country [78].

In Figure 8, we analyze the predominant wind direction for Brazil, where the arrows
indicate the wind’s direction. We note that the wind speed is predominant in the North-
east from East to West. In the North, the direction oscillates between the East/West and
North/South, with some moments in the Southeast/North direction. In the Midwest and
Southeast regions of the country, the direction that most predominates is the East/West di-
rection and sometimes the North/South direction. This indicates that in these two regions
of Brazil, the wind direction oscillates a lot compared to the Northeast region. In the South
region, wind direction predominance is from Brazil’s East/West direction.
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Figure 8: Predominant wind direction throughout Brazil.

8. Conclusion

In the results obtained in this article, the authors show a new way of treating and
modeling the wind speed series for installing wind farms and wind energy generation in
the five regions of Brazil. In addition, the authors also emphasize the importance of using
probability distribution mixture models, especially the Weibull-Weibull model, to solve series
adjustment problems with bimodal behavior in large areas such as Brazil, in addition to
research in the energy field renewable. Other results that we considered important were the
predictability of wind speed and the density of potential wind energy generation in large
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areas, making it possible to obtain information regarding wind energy in places where we
needed prior information. With this, the investment sectors of the public and private sectors
can make their decisions about the implementation of wind farms in certain regions.

This work identified the months with each region’s highest and lowest wind power density.
It is possible to help public and private initiatives with this information to adapt and protect
themselves from possible energy rationing due to the lack of water in the reservoirs since
more than 60% of Brazil’s energy is generated from its hydroelectric plants. Our results
can cooperate with the possible integration of wind energy with other energy sources, thus
reducing all risks of a collapse in the country’s energy distribution, which would be a disaster.
In future work, we suggest using artificial intelligence algorithms such as Particle Swarm
Optimization (PSO) in the Weibull-Weibull mixing model.
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General Conclusions

Through the analysis performed, it was possible to identify the areas favorable
to installing wind farms and installing solar panels in Brazil. The results were obtained
using the Multifractal Detrended Fluctuation Analysis methods and the mixtures of
probability distributions, such as the Weibull-Weibull mixture. In the adjustment of the
mixture models, the methods of parameter optimization were used: Moments’ Method,
Maximum Likelihood Method, Expectation-Maximization Algorithm, and the Particle
Swarm Optimization artificial intelligence algorithm. Based on these methods, the best
model fitting the study series of observations was defined. In addition, the parameters of
the models were estimated to identify areas conducive to installing wind and solar farms
in Brazilian regions. Based on the Inverse Distance Weighting method, it was possible to
predict the most accurate behavior of wind speed and solar radiation where there was no

a priori information.

With the inclusion of the methods adopted, it was found that in Brazil, in regions
such as the Northeast of the country, the production of energy from renewable and clean
sources can be about four times higher than in the North region, for example. Therefore,
it is possible to distribute all the surplus energy generated to the North, if this region at
some point will need it. The same situation was observed in the Southern region, where
this region can distribute its surplus energy to the Southeast and Midwest regions and sell

its surpluses to countries bordering the region, such as Argentina, Uruguay, and Paraguay.

Finally, through this research, new proposals for future work are using the Random
Forest algorithm and Artificial Neural Networks to estimate wind speed at different heights
based on the existing series and taking into account the geography of each locality. This
proposal is necessary for the continuity of this research and may generate an even more
accurate range of results compared to those in this research. After using the proposed
methods, it’s significant to use neural networks to predict the potential of wind power
generation and distribution throughout Brazil. In this way, it creates the distribution map

of surplus renewable energies in the country.
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